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Preface

This thesis is the result of almost three years of research in the field of chro-
maticity of graphs between September 2002 and March 2005. After an intro-
ductory chapter the reader will find five chapters that contain two main parts
within this research field. The two parts have strong connections with each
other. The first part, Chapters 2 and 3, is on algebraic properties and roots of
adjoint polynomials. The second part, Chapters 4, 5 and 6, studies mainly the
chromaticity of some classes of graphs, that is dense graphs, complete mul-
tipartite graphs and general multipartite graphs. Some results of this thesis
have been published in journals: see the following list.

1. On the minimum real roots of the σ-polynomials and chromatic unique-
ness of graphs, Discrete Mathematics 281 (2004), 277-294 (with X. Li,
R. Liu and S. Zhang).

2. A complete solution to a conjecture on chromatic uniqueness of complete
tripartite graphs, Discrete Mathematics 289 (2004), 175-179 (with R.
Liu and C. Ye).

3. On problems and conjectures on adjointly equivalent graphs, Discrete
Mathematics 295 (2005), 203-212 (with X. Li and R. Liu).

4. The chromaticity of certain complete multipartite graphs, Graphs and
Combinatorics 20 (2004), 423-434 (with X. Li, R. Liu and C. Ye).

5. On properties of adjoint polynomials of graphs and their applications,
Australasian Journal of Combinatorics 30 (2004), 291-307 (with X. Li,
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R. Liu and L. Wang).

6. A note on adjoint polynomials and uniquely colorable graphs, Journal
of Combinatorial Mathematics and Combinatorial Computing 45(2003),
123-128 (with R. Liu).
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Chapter 1

Introduction

For the purpose of tackling the four-color problem, Birkhoff in 1912 [2] in-
troduced the chromatic polynomial of a map M , denoted by P (M, λ), which
is the number of proper λ-colorings of a map M . If one could prove that
P (M, 4) > 0 for all maps M , then this would give a positive answer to the
four-color problem. Later, Birkhoff and Lewis [3] obtained some results con-
cerning the distribution of real roots of chromatic polynomials of planar graphs
and conjectured that these polynomials have no real roots greater than or equal
to four. The conjecture remains open.

In 1932, Whitney [76] generalized the notion of a chromatic polynomial to
that of an arbitrary graph and gave many fundamental results for its chromatic
polynomial. In 1968, Read [65] asked whether it is possible to find a set
of necessary and sufficient algebraic conditions for a polynomial to be the
chromatic polynomial of some graph. In particular, Read asked for a necessary
and sufficient condition for two graphs to be chromatically equivalent; that is,
to have the same chromatic polynomial.

In 1978, Chao and Whitehead [8] defined a graph to be chromatically
unique if no other graphs share its chromatic polynomial. They gave several
families of chromatically unique graphs [9, 10, 11]. Since then many researchers
have been studying chromatic uniqueness and chromatic equivalence of graphs.
Various families and results on chromatic uniqueness and chromatic equiva-
lence of graphs have been obtained successively. The question on chromatic
equivalence and uniqueness is called the chromaticity problem of graphs. Very
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2 Chapter 1

recently, Dong, Koh and Teo finished a monograph on chromatic polynomials
and chromaticity of graphs. So, this remains an active area of research. The
reader can find more details on the chromaticity of graphs in the survey papers
[17, 43, 44, 58, 68] and the monograph [23]. All chromatically unique graphs
with 7 vertices and with 8 vertices can be found in [46].

In this thesis, the main aim is to study the algebraic properties of adjoint
polynomials and the chromaticity of some classes of graphs. In Section 1.1, we
introduce some basic definitions and terminology. In the rest of this introduc-
tion we describe our main results, together with some older results. Most of
the terminology and notation used in this thesis is standard and can be found
in the books [1] by Biggs and [6] by Bondy and Murty.

1.1 Basic definitions and knowledge

All graphs considered here are finite and simple. Let V (G), E(G), p(G), q(G)
and G denote the vertex set, the edge set, the number of vertices, the number
of edges and the complement of a graph G, respectively. For a vertex v of
a graph G, we denote by NG(v) the set of vertices of G which are adjacent
to v and by d(v) the degree of v. For an edge e = v1v2 of G, set NG(e) =
NG(v1)∪NG(v2)−{v1, v2} and d(e) = dG(e) = |NG(e)|. By NA(G) we denote
the number of subgraphs isomorphic to K3, i.e., the number of triangles in
G. For two graphs G and H, G ∪H denotes the disjoint union of G and H,
and mH stands for the disjoint union of m copies of H. H ∼= G means that
H is isomorphic to G, denoted simply by H = G. We denote by Kn − E(G)
the graph obtained from the complete graph Kn by deleting all the edges of a
graph isomorphic to G and by K−

4 the graph obtained from K4 by deleting an
edge. We denote the path and the cycle of n vertices respectively by Pn and
Cn, and write C = {Cn|n ≥ 3},P = {Pn|n ≥ 2}. By K1,n−1 we denote the
star of n vertices and On = Kn.

For two polynomials f(x) and g(x) in x, by (g(x), f(x)) we denote the
greatest common factor of g(x) and f(x), and by g(x)|f(x) ( respectively
g(x) 6 |f(x)) we denote that g(x) divides f(x) ( respectively g(x) does not divide
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f(x)). Denote by ∂f(x) the degree of f(x). For a real number a, bac and dae
denote respectively the largest integer smaller than or equal to a and the
smallest integer larger than or equal to a.

For a graph G, a map φ : V −→ {1, 2, · · · , k} is called a vertex coloring
of G. A coloring is proper if no two adjacent vertices have the same color. A
graph G is k-colorable if G has a proper k-coloring. The chromatic number
of G, denoted by χ(G), is the minimum k such that G is k-colorable. The
number of proper colorings of G with at most λ colors is called the chromatic
polynomial, denoted by P (G,λ).

For any graph G with p vertices, P (G,λ) can be expressed in three ways:

P (G,λ) =
p∑

i=1

ai(G)λi =
p∑

i=1

ci(G)(λ)<i> =
p∑

i=0

(−1)p−jdi(G)(λ)<i>,

where (λ)<i> = λ(λ − 1)(λ − 2) · · · (λ − i + 1) and (λ)<i> = λ(λ + 1)(λ +
2) · · · (λ + i− 1), for all i ≥ 1. Then, the σ-polynomial of G is

σ(G, x) =
p∑

i=1

ci(G)xi

and the τ -polynomial of G is

τ(G, x) =
p∑

i=1

di(G)xi.

Remark 1.1.1. The concept of σ–polynomial was first explicitly introduced
and studied by Korfhage [45] in 1978. Actually, his definition of the σ–
polynomial is equivalent to what we denote by σ(G, x)/xχ(G). The reader may
find the details on σ–polynomials in [30, 32, 49].

An interpretation of the above coefficients ai, ci and di was given by Whit-
ney [76], Read [65] and Brenti [4], respectively. Here, we recall the interpre-
tation of the coefficients ci as follows: For a positive integer r, a partition
{A1, A2, · · · , Ar} of V (G) is called an r-independent partition of a graph G if
every Ai is a nonempty independent set of G. Let α(G, r) denote the num-
ber of r-independent partitions of V (G). Then, α(G, r) = cr, that is, the
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chromatic polynomial of G is written as

P (G,λ) =
∑

i≥1

α(G, r)(λ)<i>.

For a graph G with p vertices, if G0 is a spanning subgraph of G and each
component of G0 is a complete graph, then G0 is called an ideal subgraph
of G. Let bi(G) denote the number of ideal subgraphs G0 of G with p − i

components. It is clear that b0(G) = 1, b1(G) = q(G) and bi(G) = α(G, p− i)
for each i. In 1987, Liu introduced the adjoint polynomial of G as follows:

h(G, x) =
p−1∑

i=0

bi(G)xp−i.

From the above argument, we get

σ(G, x) = h(G, x) (1.1)

and

P (G,λ) =
p−1∑

i=0

bi(G)(λ)<p−i>. (1.2)

Remark 1.1.2. Using the term special graphs, Frucht gave the expression
(1.2) in [38]. The adjoint polynomial of a graph is a special subgraph polyno-
mial, see [35].

Example 1.1.1. Let G = P3 ∪ P2, Then h(G, x) = x5 + 3x4 + 2x3. So, we
have

P (G,λ) = λ<5> + 3(λ)<4> + 2λ<3>.

The properties of the chromatic polynomial of G and its σ-polynomial (or
the adjoint polynomial of G) have a close relation with their roots, which was
studied by Brenti, Royle and Wagner in 1992 and 1994. In Chapters 2 and
3 of this thesis, we investigate some algebraic properties of the adjoint poly-
nomials of some graphs, such as recursive relations, divisibility, roots of the
adjoint polynomials and so on.
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Two graphs G and H are said to be chromatically equivalent (or simply
χ-equivalent), denoted by G ∼ H, if P (G,λ) = P (H, λ). It is clear that ”∼”
is an equivalence relation on the family of all graphs. By [G] we denote the
equivalence class determined by G under ”∼”. A graph G is called chromati-
cally unique (or simply χ-unique) if H ∼= G whenever H ∼ G. For a set G of
graphs, if [G] ⊂ G for every G ∈ G, then G is called χ-closed.

The problem of chromaticity of a graph G is to consider the following:
(i) Is G χ-unique?
(ii) Determine [G] if G is not χ-unique.

Two graphs G and H are said to be adjointly equivalent, denoted by
G ∼h H, if h(G, x) = h(H,x). Clearly, ”∼h” is an equivalence relation on
the family of all graphs. Let [G]h = {H|H ∼h G}. A graph G is said to
be adjointly unique if H ∼= G whenever H ∼h G. For a set G of graphs, if
[G]h ⊂ G for every G ∈ G, then G is called adjointly closed.

From the above definitions, we have

Theorem 1.1.1. (i) G ∼ H if and only if G ∼h H;
(ii) [G] = {H|H ∈ [G]h};
(iii) G is adjointly unique if and only if G is χ-unique.

So, from Theorem 1.1.1, one sees that the study of chromaticity of a graph
G is equivalent to investigate the following problems:

(i) Is G adjointly unique?
(ii) Determine [G]h if G is not adjointly unique.

In Chapters 4 to 6, we investigate the chromaticity of some classes of
graphs, which are some dense graphs, complete multipartite graphs and gen-
eral multipartite graphs. Some new results are obtained and some open prob-
lems and conjectures are solved.
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At the end of this section, we point out that all parameters used throughout
the thesis take nonnegative integer values.

1.2 The adjoint polynomials of graphs

For convenience, we denote h(G, x) by h(G) for a graph G. In 1987, Liu intro-
duced the definition of adjoint polynomial of a graph and gave two important
properties in the following theorems.

Theorem 1.2.1. ([50]) Let G be a graph with k components G1, G2, . . . , Gk.
Then

h(G) =
k∏

i=1

h(Gi).

For an edge e = v1v2 of a graph G, the graph G ∗ e is defined as follows:
the vertex set of G ∗ e is (V (G)\{v1, v2}) ∪ {v}, and the edge set of G ∗ e is
{e′|e′ ∈ E(G), e′ is not incident with v1 or v2}∪{uv|u ∈ NG(v1)∩NG(v2)}. For
example, let e1 be an edge of C4 and e2 an edge of K4, then C4 ∗ e1 = P2 ∪K1

and K4 ∗ e2 = K3.

Theorem 1.2.2. ([51]) Let G be a graph with e ∈ E(G). Then

h(G, x) = h(G− e, x) + h(G ∗ e, x).

In particular, if e = u1u2 does not belong to any triangle of G, then

h(G, x) = h(G− e, x) + xh(G− {u1, u2}, x),

where G− e (respectively G−{u1, u2}) denotes the graph obtained by deleting
the edge e (respectively the vertices u1 and u2) from G.

Let Dn, Fn, Un, Bn, An be the graphs with n vertices, shown in Figure 1.1.
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By applying the above theorems, Liu and Zhao gave the following results.

Theorem 1.2.3. ([58, 62])) (i) For all n ≥ 6, h(Cn) = x(h(Cn−1)+h(Cn−2));
(ii) For all n ≥ 3, h(Pn) = x(h(Pn−1) + h(Pn−2));
(iii) For all n ≥ 6, h(Dn) = x(h(Dn−1) + h(Dn−2));
(iv) For all n ≥ 8, h(Fn) = x(h(Fn−1) + h(Fn−2)).

Theorem 1.2.4. ([58]) (i) For all n ≥ 2, h(Pn) =
∑
k≤n

(
k

n−k

)
xk;

(ii) For all n ≥ 4, h(Cn) =
∑
k≤n

n
k

(
k

n−k

)
xk;

(iii) For all n ≥ 4, h(Dn) =
∑
k≤n

(
n
k

(
k

n−k

)
+

(
k−2

n−k−3

))
xk.

Theorem 1.2.5. ([56, 58]) (i) For n ≥ 3, h(P2n+1) = h(Pn)h(Cn+1);
(ii) For n ≥ 4, h(Cn ∪K1) = h(T1,1,n−2);
(iii) For n ≥ 4, h(Dn ∪K1) = h(T1,2,n−3).

Let G be a graph. For e ∈ E(G), by Ge(Pm) we denote the graph obtained
from G by replacing the edge e by Pm. In Section 2.2, we give the following
general result.

Theorem 1.2.6. If m ≥ 4, then

h(Ge(Pm)) = x (h(Ge(Pm−1)) + h(Ge(Pm−2))) .

The divisibility of the adjoint polynomials is very important for studying
the chromaticity of dense graphs, as will become clear in Chapter 4. Liu and
Wang obtained the following results.
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Theorem 1.2.7. (i) ([54, 58]) For n,m ≥ 2, h(Pn)|h(Pm) if and only if
(n + 1)|(m + 1);

(ii) ([75]) For n ≥ 2 and m ≥ 4, h(Pn)|h(Dm) if and only if n = 2 and
m ≡ 2(mod 3), or n = 4 and m ≡ 3(mod 5).

In Section 2.2, we give some more general results.

Theorem 1.2.8. Let {gi(x)}i (i ≥ 0) be a sequence of polynomials with inte-
gral coefficients and gn(x) = x(gn−1(x) + gn−2(x)). Then
(i) gn(x) = h(Pk)gn−k(x) + xh(Pk−1)gn−k−1(x);
(ii) h1(Pn)|gn+1+i(x) if and only if h1(Pn)|gi(x), for any positive integers n and i.

By Theorems 1.2.6 and 1.2.8, it is not hard to obtain a sufficient and neces-
sary condition of the form h(Pn)|h(H) for any H ∈ {Pn, Cn, Dn, Fn, Un, An, Bn}.
For example, h(Pn)|h(Am) if and only if n = 2 and m ≡ 2(mod 3), for n ≥ 2
and m ≥ 6.

Let Ta,b,c denote a tree with a vertex v of degree 3 such that Ta,b,c − v =
Pa∪Pb∪Pc, shown in Figure 1.3. By Theorems 1.2.6 and 1.2.8, in Section 2.2
we get the following results.

Theorem 1.2.9. For k ≥ 1 and t ≥ 1 such that kt > 3, we have that
h(Pt−1)|h(T1,t,kt−3), h(Pt)|h(T1,t,kt+k−1) and h(Pt+2)|h(T1,t,k(t+3)).

Theorem 1.2.10. For l ≥ 2, m ≥ 1 and k ≥ 1, we have:
(i) h(Pl)|h(T1,1,m) if and only if (l, m) ∈ {(3, 4k)};
(ii) h(Pl)|h(T1,2,m) if and only if (l,m) ∈ {(2, 3k − 1), (4, 5k)};
(iii) h(Pl)|h(T1,3,m) if and only if (l, m) ∈ {(2, 3k), (3, 4k − 1), (5, 6k)};
(iv) h(Pl)|h(T1,4,m) if and only if (l,m) ∈ {(3, 4k − 3), (4, 5k − 1), (6, 7k)};
(v) h(Pl)|h(T1,5,m) if and only if (l, m) ∈ {(2, 3k − 1), (3, 4k), (4, 5k − 3),

(5, 6k − 1), (7, 8k)};
(vi) h(Pl)|h(T1,6,m) if and only if (l, m) ∈ {(2, 3k), (5, 6k−3), (6, 7k−1), (8, 9k)}.

For a graph G, if every χ(G)-coloring of G gives the same partition of
V (G), then G is said to be a uniquely χ(G)–colorable graph. Chao and Chen
[12, 13], Chao [14] and Chia [16] found some uniquely n-colorable graphs. As
an application of the recursive relations of adjoint polynomials, in Section 2.3
we generalize all of Chao’s results in [14] by the following results.
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Theorem 1.2.11. Let s be an odd integer. Then G(Km, Ps) is a uniquely
s+1
2 –colorable graph with m + s − 1 vertices, where G(Km, Ps) denotes the

graph obtained by identifying a vertex of Km with an end-vertex of Ps.

Corollary 1.2.1. ([14]) For any n ≥ 1 and m ≥ 2, we have
(i) P2n is a uniquely n-colorable graph with 2n vertices;
(ii) D2m+1 is a uniquely m-colorable graph with 2m + 1 vertices.

Theorem 1.2.12. Let s be an odd integer. Then G(Km, Ps) ∪K1 and
G′(Km, Ps) are uniquely s+3

2 -colorable graphs that are chromatically equivalent,
where G′(Km,Ps) denotes a vertex splitting graph obtained from G(Km, Ps)
(see Definition 2.3.1).

Corollary 1.2.2. Let n ≥ 3. There exist infinitely many uniquely n-colorable
graphs that are chromatically equivalent.

We now turn our attention to the roots of adjoint polynomials. In 1992,
Brenti investigated the roots of chromatic polynomials and of five other related
polynomials. Here we present several results on roots of an adjoint polynomial.

For a graph G with vertex set V (G) and edge set E(G), G is called a
comparability graph if there exists a partial order ¹ on V (G) such that uv ∈
E(G) if and only if u 6= v and either u ¹ v or v ¹ u, see [39].

Theorem 1.2.13. ([4, 5])
(i) Let G be a comparability graph. Then all roots of h(G, x) are real;
(ii) Let G be a graph without triangles. Then all roots of h(G, x) are real;
(iii) All roots of h(Kn, x) are real for any integer n.

For a graph G, by β(G) we denote the minimum real roots of h(G, x).
In Section 3.2, we give some fundamental equalities and inequalities on the
minimum real roots of h(G, x). We determine all connected graphs G such
that β(G) ∈ (−(2 +

√
5),−4) ∪ [−4, 0] in Sections 3.3 and 3.4.

Let T1 = {T1,1,n|n ≥ 1} and U = {Un|n ≥ 6}. In Figures 1.2 and 1.3 we
list some graphs used in rest of this thesis.
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The following theorems can be found in Sections 3.2 to 3.4.

Theorem 1.2.14. Let G be a connected graph and let H be a proper subgraph
of G. Then

β(G) < β(H).

Theorem 1.2.15. Let G be a connected graph. Then
(i) β(G) = −4 if and only if

G ∈ {T1,2,5, T2,2,2, T1,3,3,K1,4, C4(P2), C3(P2, P2),K−
4 , D8} ∪ U ;
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(ii) β(G) > −4 if and only if

G ∈ {K1} ∪ {T1,2,i|i = 2, 3, 4} ∪ {Di|i = 4, 5, 6, 7} ∪ P ∪ C ∪ T1.

Theorem 1.2.16. Let G be a connected graph. Then −(2+
√

5) ≤ β(G) < −4
if and only if G is one of the following graphs:
(i) Ta,b,c for a = 1, b = 2, c > 5, or a = 1, b > 2, c > 3, or a = b = 2, c > 2,

or a = 2, b = c = 3;
(ii) Qa,b,c for (a, b, c) ∈ {(2, 1, 2), (3, 4, 2), (3, 5, 3), (4, 7, 3), (4, 8, 4)},

or a ≥ 2, b ≥ b∗(a, c), c ≥ 1, where (a, c) 6= (2, 1) and

b∗(a, c) =





a + c + 1 for a ≥ 4,

3 + c for a = 3,

c for a = 2;
(iii) Dn for n ≥ 9;
(iv) An for n ≥ 6;
(v) Fn for n ≥ 9;
(vi) C3(a, b, c) for a = 1, b = 5 and c = 3, or a = 1 and b ≥ 1 if c = 1,

or a = 1 and b ≥ 4 if c = 2, or a = 1 and b ≥ c + 3 if c ≥ 3;
(vii) G ∼= C4(P3), or G ∼= C3(P2, P3).

As byproduct of the above theorems, the following corollary is obtained.

Corollary 1.2.3. Let G be a connected graph with β(G) ≥ −(2 +
√

5). Then
all the roots of σ(G, x) are real.

A graph G is called P -real (or σ-real) if all roots of P (G, x) (or σ(G, x)) are
real; otherwise G is called P -unreal (or σ-unreal). For a connected graph G

with n vertices, we define η(G) = |E(G)|/(
n
2

)
, where η(G) is said to be the edge-

density of G. We denote by η(n) the minimum edge-density over all n vertices
graphs with σ-unreal roots. Brenti, Royle and Wagner in 1994 determined
all σ-unreal graphs with 8 and 9 vertices. Furthermore, they proposed the
following problem.

Problem 1.2.1. ([5]) For a positive integer n, let η(n) be the minimum edge-
density over all σ-unreal graphs with n vertices. Give a good lower bound for
η(n). In particular, is there a constant c > 0 such that η(n) > c for sufficiency
large n?
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Let H and G be two graphs and let v ∈ V (H) and u ∈ V (G). We denote
by Gt

u(Hv) the graph obtained from G and t copies of H and a star K1,t by
identifying every vertex of degree 1 of K1,t with vertex v of a copy of H and
identifying the center of K1,t with vertex u of G, as shown in Figure 1.4.

w

w

w w
· · ·H H H

v v v

u

G

1 2 t

Gt
u(Hv)

Figure 1.4

For two positive integers n and s, we denote by Kn− s the graph obtained
by deleting s edges from Kn. In Section 3.5, we establish a way of constructing
σ-unreal graphs and give a negative answer to Problem 1.2.1 by the following
theorems.

Theorem 1.2.17. Let H be a graph with m vertices and v ∈ V (H) such that
H is σ-unreal. Let t be a positive integer and Hi = Kn−mi. Then there exists
a σ-unreal graph sequence H1 ∪H, H2

2 (Hv), H3
3 (Hv), . . ., Ht

t (Hv) such that
η(H1 ∪H) → 0 and η(H i

i (Hv)) → 0 as n →∞, where i = 2, 3, . . . , t, moreover
η(n) → 0 as n →∞.

Theorem 1.2.18. Let H be a graph with m vertices and v ∈ V (H) such that
H is σ-unreal. Let t be a positive integer and Hi = Kn−mi− p

2q [(n− im)2−si],
where i = 1, 2, . . . , t and (n−im)2 ≡ si(mod 2q). Then for any rational number
p/q, 0 ≤ p/q ≤ 1, there exists a σ-unreal graph sequence H1 ∪H, H2

2 (Hv),
H3

3 (Hv), . . ., Ht
t (Hv) such that η(H1 ∪H) → p/q and η(H i

i (Hv)) → p/q as
n →∞, where i = 2, 3, . . . , t.
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1.3 The chromaticity of some dense graphs

Let G be a graph and let h(G, x) = x`(G)h1(G, x) such that h1(G, x) is a poly-
nomial with a nonzero constant term, where `(G) is the degree of the lowest
term of h(G, x). If h1(G, x) is an irreducible polynomial over the rational
number field, then G is called an irreducible graph.

In 1994, Liu [55] found a necessary and sufficient condition for Cn to be
irreducible and gave some irreducible graphs, see [58]. Later, Zhao and Liu
[82] obtained a necessary and sufficient condition for Pn to be irreducible.
By applying the unique factorization theorem of polynomials over the rational
number field and using the fundamental properties and irreducibility of adjoint
polynomials, Li, Liu, Wang, Ye, Zhao et al. found many new families of
chromatically unique graphs. We summarize their results as follows:

Theorem 1.3.1. ([52, 60, 61]) Let G =
⋃r

i=1 kiPni∪
⋃s

j=1 ljCmj , where ni ≥ 4
and mj ≥ 5. If Pni and Cmj are irreducible for each i, 1 ≤ i ≤ r, and for each
j, 1 ≤ j ≤ s, then Kn − E(G) is χ-unique, where n ≥ V (G).

Theorem 1.3.2. ([54]) If q, q > 5, is a prime number, then Pq−1 is χ-unique.

Conjecture 1.3.1. ([58]) For every even number n, n > 4, Pn is χ-unique.

The above conjecture was confirmed respectively by Zhao, Huo and Liu
[81] and by F.M. Dong, K.L. Teo, C.H.C. Little and M.D. Hendy [29]. By
applying the theory of matching polynomials, see [34, 36, 37], Liu and Bao in
1993 obtained the following result.

Theorem 1.3.3. ([59]) If G is a 2-regular graph without C3 and C4, then G

is χ-unique.

In 1996, Du improved the above results and got the following results.

Theorem 1.3.4. ([32]) If ni 6≡ 4(mod 10) and ni is even, mj ≥ 3 and mj 6= 4,
then lK3 ∪ (∪iPni) and ∪jCmj are χ-unique, where l ≥ 0.

Very recently, Dong, Teo, Little and Hendy [29] investigated the chro-
maticity of complements of H = aK3 ∪ bD4 ∪

⋃
1≤i≤s

Pui ∪
⋃

1≤j≤t
Cvj , where

a, b ≥ 0, ui ≥ 3, ui 6≡ 4(mod 5), vj ≥ 4 and obtained a necessary and sufficient
condition for H to be chromatically unique.
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Theorem 1.3.5. ([29]) For nonnegative integers r0, r1, s, a1, a2, · · · , as, the
graph r0K1

⋃
r1K3

⋃s
i=1 aiP2i is χ-unique if and only if r0r1 + a2 = 0.

Theorem 1.3.6. ([29]) Let G = aK3
⋃

bD4
⋃

1≤i≤s
Pui

⋃
1≤j≤s

Cvj for nonnega-

tive integers a, b, ui and vj with ui ≥ 3, ui 6≡ 4(mod 5) and vj ≥ 4. Then
G is χ-unique if and only if b = 0, vj ≥ 5, ui is even when ui ≥ 6 and
{u1 + 1, u2 + 1, · · · , us + 1}⋂{v1, · · · , vt} = φ.

However, a necessary and sufficient condition for aK1 ∪i Pi ∪j Cj to be
chromatically unique is not known. In Section 4.3, we give a necessary and
sufficient condition for aK1 ∪i Pi ∪j Cj and ∪iUni to be χ-unique by the fol-
lowing theorems.

Theorem 1.3.7. Let A = {n|n ≡ 0(mod 2) and n ≥ 6} and B = {n|n ≥ 5}.
For a graph G with p vertices and δ(G) ≥ p − 3, we have that G is χ-unique
if and only if G is one of the following graphs:
(i) rK1 ∪ (

⋃
1≤i≤s

Pni) for r = 0 and ni ∈ A ∪ {2, 3, 5}, or r ≥ 1 and ni ∈ A∪
{2, 3}, where r, s ≥ 0;

(ii) t1P2∪ (
⋃

1≤i≤s
Pni)∪ (

⋃
1≤j≤t

Cmj )∪ lC3 for t1 = 0 and M = φ, or t1 ≥ 1 and

({6, 9, 15} ∩B) ∪M = φ, where t1, l, s, t ≥ 0, t + l ≥ 1, ni ∈ A ∪ {3, 5},
mj ∈ B and M = (A ∪ {3, 5}) ∩ {n− 1|n ∈ B}.

Theorem 1.3.8. Let ni ≥ 6. Then ∪m
i=1Uni is χ-unique if and only if ni = 7

or ni ≥ 10 and ni is even, where i = 1, 2, · · · ,m.

Dong, Teo, Little and Hendy [29] also determined all adjointly equivalent
classes of graphs r0K1∪ r1K3∪

⋃
1≤i≤s

P2li , for r0, r1 ≥ 0, li ≥ 1, and obtained a

necessary and sufficient condition for two graphs H and G in G1 to be adjointly
equivalent, where

G1 =



aK3 ∪ bD4 ∪

⋃

1≤i≤s

Pui

∪
⋃

1≤j≤t

Cvj |a, b, s, t ≥ 0, ui ≥ 3, ui 6≡ 4(mod 5), vj ≥ 4



 .
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Let

G2 =



aK3 ∪ bD4 ∪

⋃

1≤i≤s

Pui ∪
⋃

1≤j≤t

Cvj |a, b, s, t ≥ 0, ui ≥ 3, vj ≥ 4





and

G3 =



rK1 ∪

⋃

1≤j≤t

Cvj |r, t ≥ 0, vj ≥ 4



 .

Indeed, it is not easy to determine the equivalence class of each graph in Gi

for i = 1, 2, 3. So, they proposed the following problem: For a set G of graphs,
determine

minhG =
⋃

G∈G
[G]h,

where minhG is called the adjoint closure of G. They also proposed the fol-
lowing problem and conjectures.

Problem 1.3.1. ([29]) Determine minh(G2).

Conjecture 1.3.2. ([29]) The following set equality holds.

minh(G2) ≡


rK1 ∪ aK3 ∪ bD4 ∪

⋃

1≤i≤m

T1,1,ri ∪
⋃

1≤i≤s

Pui

∪
⋃

1≤j≤t

Cvj |a, b, r, s, t ≥ 0,m + r ≤ a, ri ≥ 2, ui ≥ 3, vj ≥ 4



 .

Conjecture 1.3.3. ([29]) The following set equality holds.

minh(G3)≡


rK1∪ bD4∪

⋃

1≤i≤m

T1,1,ri∪
⋃

1≤j≤t

Cvj |r, b,m, t ≥ 0,ri ≥ 2,vj ≥ 4



 .

Let
F1 = {K1} ∪ {T1,2,i, Di+3|i = 1, 2, 3, 4} ∪ P ∪ C ∪ T1

and

F2 = {T1,2,5, T2,2,2, T1,3,3,K1,4, C4(P2), C3(P2, P2),K−
4 , D8} ∪ U .
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Take Y1 = {⋃Gi|Gi ∈ F1} and Y2 = {⋃ Gi|Gi ∈ F1 ∪ F2}.
In Section 4.4, we obtain a method for determining the adjoint equivalence

class of each graph in sets Yi, where i = 1, 2. Furthermore, we give a negative
answer to Conjectures 1.3.2 and 1.3.3 by the following theorem.

Theorem 1.3.9. (i) There exists a graph G in minhG2 such that G contains
each graph in F1 as its component and minhG2 ⊆ Y1.

(ii) Let F3 = {K1}∪{T1,2,i, Di+3|i = 1, 3, 4}∪{Ci|i ≥ 4}∪T1 and Y3 = {⋃Gi|
Gi ∈ F3}. Then there exists a graph G in minhG3 such that G contains
each graph in F3 as its component and minhG3 ⊆ Y3.

In order to study adjoint uniqueness of complex graphs, Liu and Zhao
[58, 62] and Du [31, 32] introduced and studied independently an invariant on
adjointly equivalent graphs as follows.

For a graph G with q edges, its character R1(G) or invariant R1(G) is
defined as

R1(G) =

{
0, if q = 0,

b2(G)− (
b1(G)−1

2

)
+ 1, if q > 0,

where b1(G) and b2(G) are the second and the third coefficients of h(G), re-
spectively.

In 1996, Liu and Zhao investigated the adjoint uniqueness of graphs
⋃

i Ci∪⋃
j Dj∪

⋃
k Fk and of graphs

⋃
k≤s≤t Tk,s,r. They obtained the following results.

Theorem 1.3.10. ([57]) Let G =
⋃

ni
Dni, where ni ≥ 5 is a positive integer.

If Dni is an irreducible graph for all i, then G is χ-unique.

Theorem 1.3.11. ([62]) Let n ≥ 6. If Fn is an irreducible graph, then Fn is
χ-unique.

In [58], Liu proposed the following problems.

Problem 1.3.2. ([58]) Study the adjoint uniqueness of
⋃

i Pni ∪
⋃

j Cmj ∪⋃
k Dtk .

Problem 1.3.3. ([58]) Study the adjoint uniqueness of graphs G with R1(G) =
−1.
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Li, Bao and Liu [47], Liu [56], Wang [73] and Wang and Liu [74] obtained
the following results.

Theorem 1.3.12. ([73]) Let G =
⋃

i Pni∪
⋃

2≤k≤s≤t Tk,s,t, where t, s, k, and ni

are positive integers and ni ≥ 2 for each i. If all Pni and Tk,s,k are irreducible,
then G is χ-unique.

Theorem 1.3.13. ([74]) Let G =
⋃

1,l1,l2
T1,l1,l2 ∪

⋃
k≤s≤t Tk,s,t, where t ≥

s ≥ k ≥ 2 and l2 ≥ l1 ≥ 3. If all Tk,s,t and T1,l1,l2 are irreducible, then G is
χ-unique.

In Sections 4.5 to 4.7, we focus on studying adjoint uniqueness of some
complex graphs. Moreover some new results on Problems 1.3.2 and 1.3.3 are
obtained. First, in Section 4.5, we study adjoint uniqueness of (∪iCni) ∪
(∪iDmj ) ∪ (∪a,bT1,a,b) and of rK1 ∪ (

⋃
a,b T1,a,b). We give many new chromat-

ically unique graphs as follows.

Theorem 1.3.14. Let ni ≥ 5 and mj ≥ 9, for each i and j, and let 3 ≤ l1 ≤ 10
and l1 ≤ l2. Let G = (∪iCni) ∪ (∪jDmj ) ∪ (∪l1,l2T1,l1,l2). If h(Pn) 6 |h(Cni),
h(Pn) 6 |h(Dmj ) and h(Pn) 6 |h(T1,l1,l2), for all n ≥ 2, then G is χ–unique if
and only if l2 6= 2l1 + 5 and (l1, l2) 6= (ni − 1, ni), for all i.

Corollary 1.3.1. Let Gi ∈ {Ci|i ≥ 5, i 6≡ 2(mod 4)} ∪ {Dj |j ≥ 9, j 6≡
2(mod 3), j 6≡ 3(mod 5)} ∪ {T1,l1,l2 |3 ≤ l1 ≤ 6, l1 ≤ l2, l1 6= l2, l1 6= l2 + 1, l2 6=
2l1 +5} and (l1, l2) 6∈ {(3, 3k), (3, 4k−1), (4, 4k+1), (4, 5k−1), (4, 7k), (5, 3k+
2), (5, 4k+4), (5, 5k+2), (6, 3k+3), (6, 7k−1)|k ≥ 1}. Then ∪iGi is χ-unique.

Theorem 1.3.15. Let 3 ≤ l1 ≤ 10 and l1 ≤ l2. If h(Pm) 6 |h(T1,l1,l2) for any
m ≥ 2, then Kn−E(∪l1,l2T1,l1,l2) is χ-unique if and only if l2 6= 2l1 +5, where
n ≥ ∑

l1,l2

|V (T1,l1,l2)|.

Corollary 1.3.2. Let Gi ∈ {T1,l1,l2 |3 ≤ l1 ≤ 6, l1 ≤ l2, l1 6= l2, l1 6= l2 + 1, l2 6=
2l1 +5} and (l1, l2) 6∈ {(3, 3k), (3, 4k−1), (4, 4k+1), (4, 5k−1), (4, 7k), (5, 3k+
2), (5, 4k + 4), (5, 5k + 2), (6, 3k + 3), (6, 7k − 1)|k ≥ 1}. Then Kn − E(∪iGi)
is χ-unique, where n ≥ ∑

l1,l2

|V (T1,l1,l2)|.

In Section 4.6, we obtain the following results.
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Theorem 1.3.16. Let G = An∪(∪k
i=1Cmi), where mi 6≡ 2(mod 4) and mi ≥ 5

for all i, and n 6≡ 2(mod 3) and n ≥ 5. Then [G]h = {G} except for [G]h =
{A7 ∪ (∪k

i=1Cmi), B7 ∪ (∪k
i=1Cmi)} for n = 7; in particular, G is χ-unique if

and only if n 6= 7.

Theorem 1.3.17. Let G = Bn∪aC9∪bC15∪(∪k
i=1Cmi), where mi 6≡ 2(mod 4),

and mi ≥ 5 and mi 6= 9, 15, for all i and n ≥ 7. Then [G]h = {G} except for
the following cases:
(i) [G]h = {G, A7 ∪ aC9 ∪ bC15 ∪ (∪k

i=1Cmi)}, for n = 7;
(ii) [G]h = {G,F13 ∪ T1,1,1 ∪ (a− 1)C9 ∪ bC15 ∪ (∪k

i=1Cmi)}, for n = 8 and
a ≥ 1;

(iii) [G]h = {G, F15 ∪ T1,1,1 ∪ C5 ∪ aC9 ∪ (b− 1)C15 ∪ (∪k
i=1Cmi)}, for n = 9

and b ≥ 1;
(iv) [G]h = {G,A6 ∪ C4 ∪ aC9 ∪ bC15 ∪ (∪k

i=1Cmi), A6 ∪D4 ∪ aC9 ∪ bC15∪
(∪k

i=1Cmi)}, for n = 10.
In particular, G is χ-unique if and only if n 6= 7, 10, and a = 0 when n = 8,
and b = 0 when n = 9.

In Section 4.7 we introduce a new invariant R3(G), that is R3(G) =
R1(G)+q(G)−p(G), and give some properties. We prove the following results
in that section.

Theorem 1.3.18. Let G and H be two graphs such that h(G, x) = h(H,x).
Then

R3(G) = R3(H).

Theorem 1.3.19. Let G be a graph with k components G1, G2, · · · , Gk. Then

R3(G) =
k∑

i=1

R3(Gi).

Theorem 1.3.20. Let G be a connected graph. Then
(i) R3(G) ≤ 1, and the equality holds if and only if G ∼= K3;
(ii) R3(G) = 0 if and only if G ∈ L\{K3}, where L = {K3,K

−
4 ,K4, Pn, Cn+2,

Dn+2, Fn+4|n ≥ 2}.
Theorem 1.3.21. Let Fa = {aK3∪

⋃
i Gi|Gi ∈ L and h(K3) 6 |h(Gi)}, where

a is a nonnegative integer. Then Fa is adjointly closed.
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Theorem 1.3.22. Let a, t, r be nonnegative integers and let G = (∪i∈APi) ∪
(∪j∈BCj)∪(∪k∈MDk)∪(∪s∈EFs)∪aK3∪tK−

4 ∪rK4, where i ≥ 2, i 6≡ 4(mod 5)
and i is even, j ≥ 5, k 6≡ 3(mod 5) and k ≥ 9, s 6≡ 2(mod 5) and s ≥ 6. Then
G is χ–unique if and only if j 6= i + 1 if 2 6∈ A, or j 6= 6, 9, 15 and j 6= i + 1 if
2 ∈ A.

1.4 The chromaticity of multipartite graphs

It is well known that all complete graphs Kn are χ-unique, for n ≥ 1. A natural
question is: which complete t-partite graphs K(n1, n2, · · · , nt), for ni ≥ 1, are
χ-unique? The following result was obtained by Chao and Novacky in 1982.

Theorem 1.4.1. ([7]) For t ≥ 2, the complete t-partite graph K(n1, n2, · · · , nt)
is χ-unique if |ni − nj | ≤ 1, for all i, j = 1, 2, · · · , t.

In 1978, Chao gave the following conjecture.

Conjecture 1.4.1. For n ≥ 2 and 0 ≤ k ≤ 2, the graph K(n, n + k) is
χ-unique.

This was later confirmed by Salzberg, López and Giudici in 1986. In fact,
they proved more general results.

Theorem 1.4.2. ([69]) The graph K(n, n + k) is χ-unique, for all n ≥ 2 and
0 ≤ k ≤ max{5,

√
2n}.

Conjecture 1.4.2. ([69]) All complete bipartite graphs K(n,m) are χ-unique
when n ≥ m ≥ 2.

The conjecture was finally resolved completely by Teo and Koh in 1990
[71]. A couple of alternative proofs were given by Dong [22] and Teo and Koh
[72].

Theorem 1.4.3. ([71]) All complete bipartite graphs K(n,m) are χ-unique
when n ≥ m ≥ 2.

In 1988, Chia, Goh and Koh first investigated the chromaticity of complete
tripartite graphs and obtained the following chromatically unique families of
complete tripartite graphs.
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Theorem 1.4.4. ([18])
(i) K(n, n, n + k), for n ≥ 2 and 0 ≤ k ≤ 3, is χ-unique;
(ii) K(n− k, n, n), for n ≥ k + 2 and 0 ≤ k ≤ 3, is χ-unique;
(iii) K(n− k, n, n + k), for n ≥ 5 and 0 ≤ k ≤ 2, is χ-unique.

Chia, Goh and Koh [18] and Koh and Teo [43] proposed the following
conjecture.

Conjecture 1.4.3. ([18, 43]) For any integers n and k with n ≥ k + 2 ≥ 4,
K(n− k, n, n) is χ-unique.

From 1998 to 2002, Zou and Shi improved the above results and gave the
following results.

Theorem 1.4.5. ([83-87])
(i) For n > k + k2/3, K(n− k, n, n) is χ-unique graph;
(ii) For n > (k + k2)/3, K(n, n, n + k) is χ-unique graph;
(iii) For n > k2 + 2

√
3

3 k, K(n− k, n, n + k) is χ-unique graph;
(iv) For n ≥ 6, K(n− 4, n, n) is χ-unique graph.

In Section 5.3, we give a positive answer to Conjecture 1.4.3 and some
general results.

Theorem 1.4.6. For any integers n ≥ m ≥ r ≥ 2, we have [K(r,m, n)] ⊆
{K(x, y, z) − S|1 ≤ x ≤ y ≤ z, m ≤ z ≤ n, x + y + z = n + m + r, S ⊂
E(K(x, y, z)) and |S| = xy+xz+yz−nm−nr−mr}. In particular, if z = n,
K(r,m, n) = K(x, y, z).

Theorem 1.4.7. For any integers n and k with n ≥ k +2 ≥ 4, K(n−k, n, n)
is χ-unique.

Theorem 1.4.8. For any integers n and k with n ≥ 2k ≥ 4, K(n−k, n−1, n)
is χ-unique.

As a generalization of the above results, we get some general results in
Section 5.4.
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Theorem 1.4.9. Let 2 ≤ n1 ≤ n2 · · · ≤ nt and G = K(n1, n2, · · · , nt). If
H ∼ G, then

(i) H ∈ [G] ⊂ {K(x1, x2, · · · , xt)− S|1 ≤ x1 ≤ x2 · · · ≤ xt ≤ nt,
t∑

i=1
xi =

t∑
i=1

ni, S ⊂ E(K(x1, x2, · · · , xt))};
(ii) there exists an integer b ≥ 2 such that x1 ≤ x2 · · · ≤ xb ≤ nb − 1 and Kni

is a component of H for any i ≥ b + 1;
(iii) if xi = ni, for any i ≥ 3, then G = H.

Theorem 1.4.10. For any positive integers n ≥ k + 2, k ≥ 2 and t ≥ 3, the
complete t-partite graph K(n− k, n, n, · · · , n) is χ-unique.

Theorem 1.4.11. For any positive integers n ≥ 2k, k ≥ 2 and t ≥ 3, the
complete t-partite graph K(n− k, n− 1, n, · · · , n) is χ-unique.

In 1988, Giudici and Lopez proved

Theorem 1.4.12. ([41]) The complete t-partite graph K(n−1, n, · · · , n, n+1)
is χ-unique when t ≥ 2 and n ≥ 3.

In 1990, Li and Liu proved

Theorem 1.4.13. ([48]) K(1, n2, · · · , nt) is χ-unique if and only if max{ni|i =
2, 3, · · · , t} ≤ 2.

Koh and Teo proposed the following problem in 1990.

Problem 1.4.1. ([43]) Let t ≥ 2. Is the graph K(n1, n2, · · · , nt) χ-unique if
|ni−nj | ≤ 2, for all i, j = 1, 2, · · · , t, and sufficiently large min{n1, n2, · · · , nt}?

Very recently, Zou gave a partial answer to Problem 1.4.1 by the following
theorem.

Theorem 1.4.14. ([88]) Let ni ≥ 2, for each i, and at =

√ P
1≤i<j≤t

(ni−nj)2

2t .

The complete t-partite graph K(n1, n2, · · · , nt) is χ-unique if
t∑

i=1
ni > ta2

t +
√

2t(t− 1)at and n1, n2, · · · , nt satisfy one of the following conditions:
(i) n1 = n2 = · · · = nt; (ii) n1 < n2 · · · < nt; (iii) t = 3 or 4.
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In Section 5.5, we investigate the chromatic uniqueness of K(n1, n2, · · · , nt).
We solve Problem 1.4.1 by giving it a positive answer. Indeed, the following
results solve Problem 1.4.1 and answer even more.

Theorem 1.4.15. Let G = K(n1, n2, · · · , nt) and n =
t∑

i=1
ni. If n ≥ tq(Tn,t)−

tq(G) + t +
√

(t− 1)
∑

1≤i<j≤t(ni − nj)2, then G is χ-unique.

Theorem 1.4.16. Let G = K(n1, n2, · · · , nt). If min{ni|i = 1, 2, · · · , t} ≥
∑

1≤i<j≤t

(ni−nj)
2

2t +
√

(t−1)
P

1≤i<j≤t(ni−nj)2

t + 1, then G is χ-unique.

Theorem 1.4.17. If |ni−nj | ≤ k and min{n1, n2, · · · , nt} ≥ tk2

4 +
√

2(t−1)

2 k+
1, then K(n1, n2, · · · , nt) is χ-unique.

Theorem 1.4.18. If |ni − nj | = 2 and min{n1, n2, · · · , nt} ≥ t + 1, then
K(n1, n2, · · · , nt) is χ-unique, where t ≥ 2.

We now turn our attention to general multipartite graphs. Let S be a set
of s edges of G. Denote by G − S( or simply by G − s) the graph obtained
from G by deleting all edges in S. We denote by < S > the subgraph of
G induced by S. Let S′ be a set of s′ edges of G. Denote by G + S′ (or
simply by G + s′) the graph obtained from G by adding all edges in S′ to G.
In particular, for G = K(n1, n2, · · · , nt), we denote by G−s

n1,n2,··· ,nt
the family

{G − S|S ⊂ E(G) and |S| = s}. Let G = K(n1, n2, · · · , nt) be a complete
t-partite graph with partition sets Ai such that |Ai| = ni, where i = 1, 2, · · · , t.
By K(Ai, Aj) we denote the subgraph of G induced by Ai ∪ Aj , where i 6= j

and i, j = 1, 2, · · · , t. Denote by K
−K1,s

i,j (n1, n2, · · · , nt) the graph obtained
from K(n1, n2, · · · , nt) by deleting all s edges of K1,s from K(Ai, Aj) with
center in Ai and others in Aj . Denote by K−sK2

i,j (n1, n2, · · · , nt) the graph
obtained from K(n1, n2, · · · , nt) by deleting all s edges of sK2 from K(Ai, Aj).

In 1986, Salzberg, López and Giudici investigated the chromatic uniqueness
of the bipartite graphs and obtained the following.

Theorem 1.4.19. ([69]) Let G be the graph obtained from K(n,m) by remov-
ing an edge. Then G is χ-unique when m ≥ 3 and 0 ≤ n−m ≤ 1.
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In 1988, Read proposed the following conjecture.

Conjecture 1.4.4. ([67]) All graphs obtained from K(n,m), where n,m ≥ 3,
by removing an edge are χ-unique.

In 1990, Teo and Koh confirmed this conjecture and proposed two new
problems.

Theorem 1.4.20. ([71]) All graphs obtained from K(n,m), where n,m ≥ 3,
by removing an edge are χ-unique.

Problem 1.4.2. ([71]) For n ≥ m ≥ 4, study the chromaticity of K(n,m)−2.

Problem 1.4.3. ([71]) For n ≥ m ≥ 2, study the chromaticity of K(n,m)+1.

Later, several researchers studied the chromaticity of graphs obtained from
K(n,m) by deleting s ≥ 2 edges and obtained some new results, see [15, 40,
42, 64, 78]. Recently, Dong, Koh, Teo, Little and Hendy obtained more general
results and solved Problem 1.4.2, see [24, 25, 26].

Apart from the bipartite case, there are few known results on the chro-
maticity of general multipartite graphs. In 1988, Chia, Goh and Koh obtained

Theorem 1.4.21. ([18]) For n ≥ 2 and m ≥ 4, graphs obtained from K(n, n, n),
K(n, n + 1, n + 1) or K(m− 1,m, m− 1) by removing one edge are χ-unique.

Let < S > be a subgraph of Kn. We denote by K+s(n, n) the graph
obtained from K(n, n) by adding all edges in S between vertices of one of
the partition sets in K(n, n). For disjoint graphs G and H, G + H denotes
the join graph of G and H with vertex set V (G) ∪ V (H) and with edge set
{xy|x ∈ V (G) and y ∈ V (H)} ∪ E(G) ∪ E(H). In Sections 6.3 and 6.4, we
investigate the chromaticity of graphs K+s(n, n) and of graphs K(n,m, r)−s.
We give a partial answer to Problem 1.4.3. Indeed, in the sections we prove
the following results.

Theorem 1.4.22. For n ≥ s+2 and s ≥ 1, let S be a set of s edges in Kn and
let < S > be a bipartite graph. Then [K+s(n, n)] = {On + G|G ∈ [Kn − s]}
and K+s(n, n) is χ-unique if and only if Kn − s is χ-unique, where On + G is
the join graph of On and G.
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Theorem 1.4.23. For n ≥ s + 2 and s ≥ 1, let S be a set of s edges in Kn

and let < S > be a bipartite graph. Then K+s(n, n) is χ-unique if and only if
< S > is a χ-unique graph without cut-vertex.

Theorem 1.4.24. Let n1 ≤ n2 ≤ n3 with n = n1 + n2 + n3 and s ≥ 1. If
n > 1

2

∑
1≤i<j≤3

(ni − nj)2 +
√

2
∑

1≤i<j≤3
(ni − nj)2 + 12s + 3s + 3, then G−s

n1,n2,n3

is χ-closed.

Theorem 1.4.25. Let n1 + n2 + n3 = n and s ≥ 1. If n > 1
2

∑
1≤i<j≤3

(ni −

nj)2+
√

2
∑

1≤i<j≤3
(ni − nj)2 + 12s+3s+3, then K

−K1,s

i,j (n1, n2, n3) is χ-unique,

where i 6= j and i, j = 1, 2, 3.

Let G = K(n1, n2, n3) with n1 ≤ n2 ≤ n3 and let A1, A2 and A3 be three
partition sets with |Ai| = ni, where i = 1, 2, 3. We denote by H−sK2

n1,n2,n3
the

graph obtained by deleting all edges of sK2 from K(A1, A2) in G.

Theorem 1.4.26. Suppose n1 + n2 + n3 = n and s ≥ 1. If n1 ≤ n2 < n3 and
n > 1

2

∑
1≤i<j≤3

(ni − nj)2 +
√

2
∑

1≤i<j≤3
(ni − nj)2 + 12s + 3s + 3, then H−sK2

n1,n2,n3

is χ-unique.

In Sections 6.5 and 6.6, we investigate the chromaticity of general mul-
tipartite graphs. Many results are obtained on the chromaticity of general
multipartite graphs. We list the main results in the following.

Theorem 1.4.27. Let G = K(n1, n2, n3, n4) and S ⊂ E(G) such that n =
n1 + n2 + n3 + n4 and |S| = s ≥ 1. If n >

√
3

∑
1≤i<j≤4(ni − nj)2 + 24s +

4q(Tn,4)− 4q(G) + 4s + 4, then G−s
n1,n2,n3,n4

is χ-closed.

Theorem 1.4.28. Let G = K(n1, n2, n3, n4) and n = n1 +n2 +n3 +n4. Sup-
pose that n1 ≤ n2 ≤ n3 ≤ n4, s ≥ 1 and n >

√
3

∑
1≤i<j≤4(ni − nj)2 + 24s +

4q(Tn,4)− 4q(G) + 4s + 4. Then
(i) every K

−K1,s

i,j (n1, n2, n3, n4) is χ-unique, for any (i, j) if n2 +n3 6= n1 +n4,
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where i 6= j and i, j = 1, 2, 3, 4;
(ii) every K

−K1,s

i,j (n1, n2, n3, n4) is χ-unique, for any (i, j) if n1 = n2 and

n3 = n4, where i 6= j and i, j = 1, 2, 3, 4;
(iii) every K

−K1,s

i,j (n1, n2, n3, n4) is χ-unique, for (i, j) ∈ {(1, 2), (2, 1), (1, 3),

(3, 1), (2, 4), (4, 2), (3, 4), (4, 3)}.

Theorem 1.4.29. Let G = K(n1, n2, n3, n4) with n1 ≤ n2 < n3 ≤ n4 and let
s ≥ 1. If n >

√
3

∑
1≤i<j≤4(ni − nj)2 + 24s + 4q(Tn,4)− 4q(G) + 4s + 4, then

K−sK2
1,2 (n1, n2, n3, n4) is χ-unique, where n = n1 + n2 + n3 + n4.

For convenience, we replace
a︷ ︸︸ ︷

n, n, · · · , n by a×n. For example, K(t1×n, t2×

(n+1)) denotes the graph K(
t1︷ ︸︸ ︷

n, n, · · · , n,

t2︷ ︸︸ ︷
n + 1, n + 1, · · · , n + 1) and G−s(t1×

n, t2 × (n + 1)) denotes the family {K(
t1︷ ︸︸ ︷

n, n, · · · , n,

t2︷ ︸︸ ︷
n + 1, n + 1, · · · , n + 1) −

s|s ≥ 1}. Suppose that K(t1 × n, t2 × (n + 1)) has t partition sets Ai such
that |Ai| = n for 1 ≤ i ≤ t1 and |Ai| = n + 1 for t1 + 1 ≤ i ≤ t. We denote
K
−K1,s

i,j (t1×n, t2× (n+1)) for |Ai| = |Aj | = n, K
−K1,s

i,j (t1×n, t2× (n+1)) for

|Ai| = |Aj | = n + 1, K
−K1,s

i,j (t1 × n, t2 × (n + 1)) for |Ai| = n and |Aj | = n + 1

and K
−K1,s

i,j (t1×n, t2× (n + 1)) for |Ai| = n +1 and |Aj | = n, respectively, by
H−K1,s(n, n), H−K1,s(n+1, n+1), H−K1,s(n, n+1) and H−K1,s(n+1, n). Let
H−K1,s = {H−K1,s(n, n), H−K1,s(n + 1, n + 1),H−K1,s(n, n + 1),H−K1,s(n +
1, n)}.

Theorem 1.4.30. Let s ≥ 1, n ≥ 2 and t1 ≥ 1. If n ≥ s + 2, then G−s(t1 ×
n, t2 × (n + 1)) is χ-closed.

Theorem 1.4.31. Let G ∈ H−K1,s. If s ≥ 1 and n ≥ s + 2, then G is
χ-unique.

Let K(n, n, (t − 2) × (n + 1)) have t partition sets Ai such that |A1| =
|A2| = n and |Ai| = n + 1 for 3 ≤ i ≤ t.

Theorem 1.4.32. Let G = K(n, n, (t− 2)× (n + 1)). If s ≥ 1 and n ≥ s + 2,
then K−sK2

1,2 (n, n, (t− 2)× (n + 1)) is χ-unique.
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In order to easily find the proofs of the new theorems mentioned in this
introduction, we list here the corresponding theorems in the following chapters.

Theorems of Chapter 1 Corresponding Theorems

Theorem 1.2.6 Theorem 2.2.1

Theorem 1.2.8 Theorem 2.2.2

Theorem 1.2.9 Theorem 2.2.3

Theorem 1.2.10 Theorem 2.2.4

Theorem 1.2.11 Theorem 2.3.1

Theorem 1.2.12 Theorem 2.3.3

Corollary 1.2.2 Corollary 2.3.3

Theorem 1.2.14 Theorem 3.2.2

Theorem 1.2.15 Theorem 3.3.2

Theorem 1.2.16 Theorem 3.4.1

Corollary 1.2.3 Corollary 3.4.1

Theorem 1.2.17 Theorem 3.5.3

Theorem 1.2.18 Theorem 3.5.4

Theorem 1.3.7 Theorem 4.3.3

Theorem 1.3.8 Theorem 4.3.4

Theorem 1.3.9 Theorem 4.4.1

Theorem 1.3.14 Theorem 4.5.1

Corollary 1.3.1 Corollary 4.5.1

Theorem 1.3.15 Theorem 4.5.2

Corollary 1.3.2 Corollary 4.5.2

Theorem 1.3.16 Theorem 4.6.3

Theorem 1.3.17 Theorem 4.6.4

Theorem 1.3.18 Theorem 4.7.1

Theorem 1.3.19 Theorem 4.7.2

Theorem 1.3.20 Theorem 4.7.4

Theorem 1.3.21 Theorem 4.7.5
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Theorems of Chapter 1 Corresponding Theorems

Theorem 1.3.22 Theorem 4.7.6

Theorem 1.4.6 Theorem 5.3.1

Theorem 1.4.7 Theorem 5.3.2

Theorem 1.4.8 Theorem 5.3.3

Theorem 1.4.9 Theorem 5.4.1

Theorem 1.4.10 Theorem 5.4.2

Theorem 1.4.11 Theorem 5.4.3

Theorem 1.4.15 Theorem 5.5.2

Theorem 1.4.16 Theorem 5.5.3

Theorem 1.4.17 Theorem 5.5.4

Theorem 1.4.18 Theorem 5.5.5

Theorem 1.4.22 Theorem 6.3.1

Theorem 1.4.23 Theorem 6.3.2

Theorem 1.4.24 Theorem 6.4.2

Theorem 1.4.25 Theorem 6.4.3

Theorem 1.4.26 Theorem 6.4.4

Theorem 1.4.27 Theorem 6.5.2

Theorem 1.4.28 Theorem 6.5.3

Theorem 1.4.29 Theorem 6.5.4

Theorem 1.4.30 Theorem 6.6.2

Theorem 1.4.31 Theorem 6.6.3

Theorem 1.4.32 Theorem 6.6.4
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Chapter 2

Some Properties of Adjoint

Polynomials of Graphs

2.1 Introduction

We recall the definition of adjoint polynomial of a graph and some of its
important properties. For a graph G with p vertices, if G0 is a spanning
subgraph of G and each component of G0 is a complete graph, then G0 is
called an ideal subgraph of G. Let bi(G) denote the number of ideal subgraphs
of G with p− i components. Then the following polynomial

h(G, x) =
p−1∑

i=0

bi(G)xp−i

is called the adjoint polynomial of G.

Example 2.1.1. For C5, we have b0(C5) = 1, b1(C5) = 5, b2(C5) = 5 and
b3(C5) = b4(C5) = 0. So, h(C5, x) = x5 + 5x4 + 5x3.

In 1987, Liu introduced the definition of adjoint polynomials of graphs and
gave some useful properties.

Theorem 2.1.1. ([50]) Let G be a graph with k components G1, G2, . . . , Gk.
Then

h(G, x) =
k∏

i=1

h(Gi, x).

29
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For an edge e = v1v2 of a graph G, the graph G ∗ e is defined as follows:
the vertex set of G ∗ e is (V (G)\{v1, v2}) ∪ {v}, and the edge set of G ∗ e is
{e′|e′ ∈ E(G), e′ is not incident with v1 or v2}∪{uv|u ∈ NG(v1)∩NG(v2)}. For
example, let e1 be an edge of C4 and e2 an edge of K4, then C4 ∗ e1 = P2 ∪K1

and K4 ∗ e2 = K3.

Theorem 2.1.2. ([51]) Let G be a graph with e ∈ E(G). Then

h(G, x) = h(G− e, x) + h(G ∗ e, x).

In particular, if e = u1u2 does not belong to any triangle of G, then

h(G, x) = h(G− e, x) + xh(G− {u1, u2}, x).

Example 2.1.2. For D5 (see Figure 1.1), by Theorem 2.1.2 it is easy to get
that h(D5, x) = x5 + 5x4 + 5x3 + x2.

Example 2.1.3. For G = C5 ∪D5, by Theorem 2.1.1 and the above examples
we have

h(G, x) = h(C5, x)h(D5, x) = x10 + 10x9 + 35x8 + 51x7 + 30x6 + 5x5.

From equations (1.1) and (1.2), one sees that it is not hard to get the
chromatic polynomials of C5, D5 and C5 ∪D5. In fact, it is easy to compute the
chromatic polynomial of a dense graph by computing the adjoint polynomial
of its complement. So, many researchers studied the properties of adjoint
polynomials. Some useful and interesting properties were found by Dong,
Teo, Little and Hendy [27, 28, 29], Du [31, 32], Liu [50-58], Ma [63], Wang and
Liu [73, 74, 75], Ye and Li [79] and Zhao, Hou and Liu [80, 81, 82].

In the second section of this chapter, our main aim is to investigate recur-
sive relations and divisibility of adjoint polynomials of some family of graphs.
As an application of the recursive relations of adjoint polynomials, in Section
2.3 we study uniquely colorable graphs.

For a graph G, we denote by t(G) the lowest term of h(G, x) and by
`(G) the degree of t(G), i.e., `(G) = ∂(t(G)). We denote by h1(G, x) the
polynomial with a nonzero constant term such that h(G, x) = x`(G)h1(G, x).
For convenience, we denote h(G, x) by h(G) and h1(G, x) by h1(G).
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2.2 The divisibility of adjoint polynomials of some

graphs

Let G be a graph. For w ∈ V (G) and e ∈ E(G), by Gw(Pm) (respectively
Ge(Pm)) we denote the graph obtained from G and Pm by identifying a vertex
w of G with an end-vertex of Pm (respectively by replacing the edge e of G

by Pm).

Lemma 2.2.1. If m ≥ 3, then

h(Gw(Pm)) = x[h(Gw(Pm−1)) + h(Gw(Pm−2))].

Proof. Let uv be a pendant edge of Gw(Pm) with uv ∈ E(Pm). By Theorem
2.1.2, we have

h(Gw(Pm)) = h(Gw(Pm−1))h(K1) + xh(Gw(Pm − {u, v}))
= x[h(Gw(Pm−1)) + h(Gw(Pm−2))].

¤

Theorem 2.2.1. If m ≥ 4, then

h(Ge(Pm)) = x[h(Ge(Pm−1)) + h(Ge(Pm−2))].

Proof. Let e = uv ∈ E(G) and u, v ∈ V (Ge(Pm)). Take H = G − e and
F = G − u. Choose a vertex w ∈ V (Pm) such that uw ∈ E(Ge(Pm)). When
m ≥ 4, by Theorem 2.1.2 we have

h(Ge(Pm)) = h(Ge(Pm)− uw) + xh(Ge(Pm)− {u,w}).

Note that Ge(Pm) − uw = Hv(Pm−1) and Ge(Pm) − {u,w} = Fv(Pm−2). By
Lemma 2.2.1, it follows that

h(Ge(Pm)) = x[h(Hv(Pm−2)) + h(Hv(Pm−3))]
+x2[h(Fv(Pm−3)) + h(Fv(Pm−4))]

= x[h(Hv(Pm−2)) + xh(Fv(Pm−3))]
+x[h(Hv(Pm−3)) + xh(Fv(Pm−4))]

= x[h(Ge(Pm−1)) + h(Ge(Pm−2))].

¤
By Theorem 2.2.1, we can easily prove the following.
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Lemma 2.2.2. ([58, 62]) (i) For n ≥ 3, h(Pn) = x(h(Pn−1) + h(Pn−2));
(ii) For n ≥ 6, h(Cn) = x(h(Cn−1) + h(Cn−2));
(iii) For n ≥ 6, h(Dn) = x(h(Dn−1) + h(Dn−2));
(iv) For n ≥ 8, h(Fn) = x(h(Fn−1) + h(Fn−2)).

Theorem 2.2.2. Let {gi(x)}i (i ≥ 0) be a sequence of polynomials with inte-
gral coefficients and gn(x) = x(gn−1(x) + gn−2(x)). Then
(i) gn(x) = h(Pk)gn−k(x) + xh(Pk−1)gn−k−1(x);
(ii) h1(Pn)|gn+1+i(x) if and only if h1(Pn)|gi(x), for any positive integers n and i.

Proof. (i) By induction on k. Since h(P1) = x and h(P2) = x2+x, by Lemma
2.2.2(i) we get h(P0) = 1. Thus, we have

gn(x) = h(P1)gn−1(x) + xh(P0)gn−2(x).

So, (i) holds when k = 1. Suppose that it is true for k ≤ l − 1. From the
recursive relation of gn(x), Lemma 2.2.2(i) and the induction hypothesis, we
have

gn(x) = x(gn−1(x) + gn−2(x))
= xh(Pl−1)gn−l(x) + x2h(Pl−2)gn−l−1(x)+

xh(Pl−2)gn−l(x) + x2h(Pl−3)gn−l−1(x)
= h(Pl)gn−l(x) + xh(Pl−1)gn−l−1(x).

(ii) From (i), for any integers n and i, it follows that

gn+1+i(x) = h(Pn+1)gi(x) + xh(Pn)gi−1(x).

It is not difficult to see that (h1(Pn), h1(Pn+1)) = 1 and (h1(Pn), x) = 1 for
n ≥ 2. So, from the above equality we have h1(Pn)|gn+1+i(x) if and only if
h1(Pn)|gi(x). ¤

Remark 2.2.1. From Theorem 2.2.2 (ii), we have that h1(Pn)|g(n+1)k+i(x)
if and only if h1(Pn)|g(n+1)(k−1)+i(x), for k ≥ 1. Take m = (n + 1)k + i and
0 ≤ i ≤ n. Then it follows that h1(Pn)|gm(x) if and only if h1(Pn)|gi(x),
where 0 ≤ i ≤ n. The result is used in the proofs of Theorems 2.2.3, 2.2.4 and
2.2.5.
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From Theorem 1.2.4, we have

Lemma 2.2.3. For n ≥ 2, ∂(h1(Pn)) = bn
2 c and `(Pn) = bn+1

2 c.

Lemma 2.2.4. (i) For t ≥ 1 and m ≥ 4, h(T1,t,m) = x[h(T1,t,m−1)+h(T1,t,m−2)];
(ii) Let n = |V (T1,t,m)| = m + t + 2. Then

∂h1(T1,t,m) =

{ ⌊
n
2

⌋
, if t and m are even,⌊

n−1
2

⌋
, otherwise.

(iii) Let n = |V (T1,t,m)| = m + t + 2. Then

`(T1,t,m) =

{ ⌊
n
2

⌋
, if t and m are even,⌊

n+2
2

⌋
, otherwise.

Proof. (i) This is obvious from Lemma 2.2.1.
(ii) Choose the edge e = uv ∈ E(T1,t,m) such that du = 1 and dv = 3.

By Theorem 2.1.2, h(T1,t,m) = x[h(Pm+t+1) + h(Pt)h(Pm)]. From Lemma
2.2.3, we have ∂(h1(Pm+t+1)) = bm+t+1

2 c and ∂(h1(Pt)h1(Pm)) = bm
2 c + b t

2c.
Clearly, ∂(h1(Pm+t+1)) ≥ ∂(h1(Pt)h1(Pm)). Noticing that ∂(h(Pm+t+1)) =
∂(h(Pt)h(Pm)) + 1, we have

∂(h1(T1,t,m)) = ∂(h1(Pm+t+1)) + 1 for ∂(h1(Pm+t+1)) = ∂(h1(Pt)h1(Pm))

and

∂(h1(T1,t,m)) = ∂(h1(Pm+t+1)) for ∂(h1(Pm+t+1)) > ∂(h1(Pt)h1(Pm)).

It is not difficult to verify that ∂(h1(Pm+t+1)) = ∂(h1(Pt)h1(Pm)) only if m

and t are even. So, (ii) holds.
Clearly, (iii) follows from (ii). ¤

Lemma 2.2.5. ([56]) Let 1 ≤ r1 ≤ r2 and r1 ≤ s1 ≤ s2 such that r1+r2 = s1+
s2. Then h(Pr1)h(Pr2) − h(Ps1)h(Ps2) = (−1)r1xr1+1h(Ps1−r1−1)h(Ps2−r1−1),
where h(P0) = 1.

Theorem 2.2.3. For k ≥ 1 and t ≥ 1 such that kt > 3, we have that
h(Pt−1)|h(T1,t,kt−3), h(Pt)|h(T1,t,kt+k−1) and h(Pt+2)|h(T1,t,k(t+3)).
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Proof. Suppose that g0(x) = (−1)t h(Pt)2

xt , g1(x) = (−1)t−1 h(Pt)h(Pt−3)+h(Pt−1)2

xt−2

and gn(x) = x[gn−1(x) + gn−2(x)]. We have the following claim.

Claim. For n ≥ t + 3, gn(x) = h(T1,t,n−t−2).
Proof of the claim: Noticing that h(Pt)2 = x(h(Pt)h(Pt−2)+h(Pt)h(Pt−1)),
from Theorem 2.2.2 and Lemma 2.2.5, we can obtain by calculation that

gt+3(x) = h(Pt+2)g1(x) + xh(Pt+1)g0(x)

= (−1)t−1h(Pt)
xt−2 [h(Pt−3)h(Pt+2)− h(Pt−2)h(Pt+1)]

+ (−1)t−1h(Pt−1)
xt−2 [h(Pt−1)h(Pt+2)− h(Pt)h(Pt+1)]

= h(P3)h(Pt) + x3h(Pt−1).

By Theorem 2.1.2, h(T1,t,1) = h(P3)h(Pt) + x3h(Pt−1). Thus, gt+3(x) =
h(T1,t,1).

Similarly, from Theorems 2.1.1 and 2.1.2 and Lemma 2.2.5, we can show
that gt+4(x) = h(T1,t,2) = h(P4)h(Pt) + x2h(P2)h(Pt−1). Using the recursive
relation of gn(x), from (i) of Lemma 2.2.4, we have gn(x) = h(T1,t,n−t−2) for
n ≥ t + 3. This completes the proof of the claim.

Using the recursive relation of gn(x), from (i) of Theorem 2.2.2, we can
obtain by calculation that gt+2(x) = gt+4(x)−xgt+3(x)

x = h(Pt+2), gt+1(x) =
gt+3(x)−xgt+2(x)

x = xh(Pt) and gt−1(x) = (x+1)gt+1(x)−gt+2(x)
x = xh(Pt−1). Clearly,

h1(Pt−1)|gt−1(x), h1(Pt)|gt+1(x), h1(Pt+2)|gt+2(x). So, by (ii) of Theorem
2.2.2, h1(Pt−1)|gkt+t−1(x), h1(Pt)|g(t+1)k+t+1(x) and h1(Pt+2)|g(t+3)k+t+2(x).
Note that gn(x) = h(T1,t,n−t−2) for n ≥ t+3. We have that h1(Pt−1)|h(T1,t,kt−3),
h1(Pt)|h(T1,t,kt+k−1) and h1(Pt+2)|h(T1,t,k(t+3)). Thus, from Lemmas 2.2.3 and
2.2.4, it is not difficult to see that h(Pt−1)|h(T1,t,kt−3), h(Pt)|h(T1,t,kt+k−1) and
h(Pt+2)|h(T1,t,k(t+3)). ¤

Theorem 2.2.4. For l ≥ 2, m ≥ 1 and k ≥ 1, we have:
(i) h(Pl)|h(T1,1,m) if and only if (l, m) ∈ {(3, 4k)};
(ii) h(Pl)|h(T1,2,m) if and only if (l,m) ∈ {(2, 3k − 1), (4, 5k)};
(iii) h(Pl)|h(T1,3,m) if and only if (l, m) ∈ {(2, 3k), (3, 4k − 1), (5, 6k)};
(iv) h(Pl)|h(T1,4,m) if and only if (l,m) ∈ {(3, 4k − 3), (4, 5k − 1), (6, 7k)};
(v) h(Pl)|h(T1,5,m) if and only if (l, m) ∈ {(2, 3k − 1), (3, 4k), (4, 5k − 3),

(5, 6k − 1), (7, 8k)};
(vi) h(Pl)|h(T1,6,m) if and only if (l, m) ∈ {(2, 3k), (5, 6k−3), (6, 7k−1), (8, 9k)}.
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Proof. Let g0(x) = (−1)t h(Pt)2

xt , g1(x) = (−1)t−1 h(Pt)h(Pt−3)+h(Pt−1)2

xt−2 and
gn(x) = x[gn−1(x) + gn−2(x)]. From the proof of Theorem 2.2.3, one can see
that, for n ≥ t + 3, gn(x) = h(T1,t,n−t−2).

Without loss of generality, assume that n = (l + 1)k + i, where 0 ≤
i ≤ l. By Theorem 2.2.2, see Remark 2.2.1, h1(Pl)|gn(x) if and only if
h1(Pl)|gi(x) for 0 ≤ i ≤ l. Note that gi(x) = h(T1,t,i−t−2), for l ≥ t + 3.
From Lemma 2.2.3 and (ii) of Lemma 2.2.4, we have ∂h1(Pl) = bl/2c and
∂(gi(x)) = ∂h1(T1,t,i−t−2) ≤ bi/2c ≤ bl/2c. Thus, if h1(Pl)|h1(T1,t,i−t−2),
then ∂(h1(Pl)) = ∂(h1(T1,t,i−t−2)). Moreover, it must hold that h1(Pl) =
h1(T1,t,i−t−2). So, by the definition of R1(G) (see the later Section 4.2),
R1(Pl) = R1(T1,t,i−t−2), which contradicts that R1(Pl) 6= R1(T1,t,i−t−2). There-
fore, we have that, for l ≥ t + 3, h(Pl) 6 |h(T1,t,i−t−2). Thus, it is sufficient to
consider the cases in which l ≤ t + 2.
Case 1. t = 1. Clearly, l ≤ 3.

By calculation we have that g0(x) = −x, g1(x) = x, g2(x) = x2 and g3(x) =
h(P3). It is easy to verify that h1(Pl)|gi(x) if and only if l = i = 3 for 2 ≤ l ≤ 3
and 0 ≤ i ≤ 3. By Theorem 2.2.2(ii), h1(P3)|g4k+3(x). Thus, h1(Pl)|h(T1,1,m)
if and only if l = 3 and m = 4k, where k ≥ 1. From Lemma 2.2.3 and (iii) of
Lemma 2.2.4, we can obtain that if m ≥ 4, then h(Pl)|h(T1,1,m) if and only if
l = 3 and m = 4k, for k ≥ 1. This completes the proof of (i).
Case 2. t = 2. So, l ≤ 4.

By calculation, it is easy to obtain that g0(x) = [h1(P2)]2, g1(x) = −x2,
g2(x) = 2x2 + x, g3(x) = x2h(P2) and g4(x) = x2h1(P4). One can see that
h1(Pl)|gi(x) if and only if (l, i) ∈ {(2, 0), (2, 3), (4, 4)}, for 2 ≤ l ≤ 4 and
0 ≤ i ≤ 4. From Theorem 2.2.2 (ii), it is not difficult to see that h1(P2)|g3k+3

and h1(P4)|g5k+4. Hence, h1(Pl)|h(T1,2,m) if and only if (l, m) ∈ {(2, 3k −
1), (4, 5k)}. With a proof similar to that of (i), we know that (ii) holds.
Case 3. t = 3. So, l ≤ 5.

By calculation, we have that g0(x) = −[h1(P3)]2, g1(x) = x(x2 + 3x +
3), g2(x) = −x2h1(P2), g3(x) = x2(2x + 3), g4(x) = x3h1(P3) and g5(x) =
x3h1(P5). One can verify that h1(Pl)|gi(x) if and only if (l, i) ∈ {(3, 0), (2, 2),
(3, 4), (5, 5)}, for 2 ≤ l ≤ 4 and 0 ≤ i ≤ 5. With a proof completely similar to
that of (i), we can show that (iii) holds.
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Similarly, we can show that (iv), (v) and (vi) hold. Here we only give the
expression of gi(x). The details of the proof are omitted.

When t = 4, g0(x) = [h1(P4)]2, g1(x) = −x(x3 +5x2 +7x+1), g2(x) = x(x3 +
4x2 +5x+1), g3(x) = −x3h1(P3), g4(x) = x2(2x2 +5x+1), g5(x) = x3h1(P4)
and g6(x) = x3h1(P6).

When t = 5, g0(x) = −[h1(P5)]2, g1(x) = x(x4 + 7x3 + 16x2 + 13x + 4),
g2(x) = −x2(x3 +6x2 +11x+5), g3(x) = x2h1(P2)h1(P3), g4(x) = −x3h1(P4),
g5(x) = x3(2x2 + 7x + 4), g6(x) = x4h1(P5) and g7(x) = x4h1(P7).

When t = 6, g0(x) = [h1(P6)]2, g1(x) = −x(x5 +9x4 +29x3 +40x2 +22x+2),
g2(x) = xh1(P2)(x4+7x3+15x2+9x+1), g3(x) = −x(x4+7x3+16x2+12x+1),
g4(x) = x2(x4 + 6x3 + 12x2 + 9x + 1), g5(x) = −x4h1(P5), g6(x) = x3(2x3 +
9x2 + 9x + 1), g7(x) = −x4h1(P6) and g8(x) = x4h1(P8).

The proof of the theorem is now complete. ¤

From Theorem 2.2.4, it is not difficult to see that, for 1 ≤ t ≤ 6 and n ≥ 2,
h(Pn)|h(T1,t,m) if and only if n + 1|t, or n + 1|t + 1, or n + 1|t + 3. So, we
propose the following problem.

Problem 2.2.1. For n ≥ 2 and m ≥ t ≥ 1, find a necessary and sufficient
condition for h(Pn)|h(T1,t,m). In particular, is it true that h(Pn)|h(T1,t,m) if
and only if n + 1|t, or n + 1|t + 1, or n + 1|t + 3?

By Theorem 2.2.2 and Lemma 2.2.2, it is not hard to obtain a sufficient
and necessary condition for h(Pn)|h(H), where H ∈ {Pn, Cn, Dn, Fn, An, Bn}.

Theorem 2.2.5. For n ≥ 2, we have
(i) h(Pn)|h(Pm) if and only if (n + 1)|(m + 1);
(ii) h(Pn)|h(Cm) if and only if n = 3 and m = 4k + 2;
(iii) h(Pn)|h(Dm) if and only if n = 2 and m = 3k + 2, or n = 4 and

m = 5k + 3;
(iv) h(Pn)|h(Fm) if and only if n = 2 and m = 3k+2, or n = 4 and m = 5k+2;
(v) h(Pn)|h(Am)if and only if n = 2 and m = 3k + 2;
(vi) h(Pn) 6 |h(Bm) for all n ≥ 2 and m ≥ 6.
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2.3 Adjoint polynomials of graphs and uniquely col-

orable graphs

Let λ be a positive integer. A λ-coloring of G is a partition of V (G) into λ

color classes such that the vertices in the same color class are not adjacent. If
every χ(G)–coloring of G gives the same partition of V (G), then G is said to
be a uniquely χ(G)–colorable graph.

For a graph G with p vertices, we denote by α(G, r) the number of r-
independent partitions of V (G), where r = 1, 2, · · · , p. Clearly, G is uniquely

χ(G)-colorable if and only if α(G,χ(G)) = 1. Let h(G) =
p∑

i=0
bi(G)xp−i.

Recalling that bi(G) = α(G, p− i), we have that `(G) = χ(G) and α(G,χ(G))
is the coefficient of t(G). Thus, the following basic result follows.

Lemma 2.3.1. Let G be a graph. Then G is uniquely n-colorable if and only
if t(G) = xn.

In [12, 13, 14], the unique n-colorability of graphs was studied. Some
results of the unique n-colorability of graphs were obtained. In this section,
we obtain some new results on the unique colorability of graphs by using
properties of the adjoint polynomials of graphs. Furthermore, we generalize
the results in [14].

Lemma 2.3.2. Let m be a positive integer. Then t(Km) = x.

Definition 2.3.1. ([33]) Let G be a graph with vertex v, and NG(v) = A ∪
B and A ∩ B = ∅. Then H = (G, v, A,B) is the graph defined as fol-
lows: V (H) = (V (G) − {v}) ∪ {v1, v2}(v1, v2 6∈ V (G)) and E(H) = {e ∈
E(G)|e is not incident with v} ∪ {v1u|u ∈ A} ∪ {v2u|u ∈ B}. H is called the
graph obtained from G by splitting vertex v, and we write H = G|v. H is said
to be a vertex splitting graph of G if H is obtained from G by a sequence of
vertex splitting.

Definition 2.3.2. ([33]) For a graph G with A,B ⊆ V (G), A and B are said
to be adjacent in G if for any x ∈ A and y ∈ B, we have xy ∈ E(G).

Lemma 2.3.3. ([33]) Let G be a graph with vertex v and H = (G, v,A, B).
Then h1(H, x) = h1(G, x) if and only if A and B are adjacent in G.
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We consider a graph G containing K3 as a subgraph. Let {u, v, w} =
V (K3) ⊂ V (G) and dG(v) = 2. Let A = {u} and B = {w}. It is clear
that A and B are adjacent in G, see Figure 2.1. By Lemma 2.3.3, we have
h1(G, x) = h1(G|v, x).

Denote by G(Km, Ps) the graph obtained from Km and Ps by identifying
a vertex of Km with a vertex of degree 1 of Ps. Clearly G(Km, P1) = Km.

Lemma 2.3.4. Let s ≥ 3. Then
(i) h(G(Km, Ps), x) = x(h(G(Km, Ps−1), x) + h(G(Km, Ps−2), x));

(ii) t(G(Km, Ps)) =

{
x

s+1
2 , if s is odd,

s+2
2 x

s+2
2 , if s is even.

Proof: (i) This is obvious from Lemma 2.2.1.
(ii) By induction on s.
From Lemma 2.2.1, we have that h(G(Km, P2), x) = x(h(Km, x)+h(Km−1, x))

and h(G(Km, P3), x) = x(h(G(Km, P2), x) + h(Km, x)). So, by Lemma 2.3.2,
we get that

t(G(Km, P2)) = 2x2 and t(G(Km, P3)) = x2.

Suppose that (ii) holds when s < k, where k ≥ 4. By Lemma 2.2.1,

h(G(Km, Pk), x) = x(h(G(Km, Pk−1), x) + h(G(Km, Pk−2), x)).

If k is even, then t(G(Km, Pk−1)) = x
k
2 and t(G(Km, Pk−2)) = k

2x
k
2 , by

the induction hypothesis. Hence t(G(Km, Pk)) = k+2
2 x

k+2
2 .
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If k is odd, then t(G(Km, Pk−1)) = k+1
2 x

k+1
2 and t(G(Km, Pk−2)) = x

k−1
2 ,

by the induction hypothesis. Therefore t(G(Km, Pk)) = x
k+1
2 . ¤

By Lemmas 2.3.1 and 2.3.4, we prove easily the following results.

Theorem 2.3.1. Let s be an odd integer. Then G(Km, Ps) is a uniquely
s+1
2 –colorable graph with m + s− 1 vertices.

Corollary 2.3.1. ([14]) For any n ≥ 1 and m ≥ 2, we have
(i) P2n is a uniquely n-colorable graph with 2n vertices;
(ii) D2m+1 is a uniquely m-colorable graph with 2m + 1 vertices.

Theorem 2.3.2. Let G be a graph with k components G1, G2, · · · , Gk. Then
G is uniquely n-colorable if and only if each complement Gi is uniquely mi-

colorable and n =
k∑

i=1
mi.

Proof: By Theorem 2.1.1, t(G) =
∏k

i=1 t(Gi). The theorem follows from
Lemma 2.3.1. ¤

By applying Theorems 2.3.1 and 2.3.2, we can find many families of uniquely
n-colorable graphs with m vertices, where n ≥ 3 and m ≥ 3. So, we have the
following corollary.

Corollary 2.3.2. There exist infinitely many uniquely n-colorable graphs with
m vertices, where n ≥ 3, m ≥ 3 and m ≥ n.

Let v ∈ V (G(Km, Ps)) such that v ∈ V (Km) and d(v) = m − 1. By
G′(Km, Ps) we denote the graph obtained from G(Km, Ps) by splitting the
vertex v.

Theorem 2.3.3. Let s be an odd integer. Then G(Km, Ps) ∪K1 and G′(Km, Ps)
are uniquely s+3

2 -colorable graphs that are chromatically equivalent.

Proof: Choose A and B such that A∩B = ∅ and A∪B = V (Km)\{v}, where
A 6= ∅ and B 6= ∅. Note that A and B are adjacent in G(Km, Ps). By Lemma
2.3.3, we have h1(G′(Km, Ps), x) = h1(G(Km, Ps), x). Since

p(G′(Km, Ps)) = p(G(Km, Ps) ∪K1),
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we have
h(G′(Km, Ps), x) = h(G(Km, Ps) ∪K1, x).

From Lemma 2.3.4,

t(G′(Km, Ps)) =

{
x

s+3
2 , if s is odd,

s+4
2 x

s+4
2 , if s is even.

The theorem now follows from Lemma 2.3.1. ¤

Note that there are many ways of choosing A and B such that A and B

are adjacent in G(Km, Ps). There exist many graphs that are chromatically
equivalent with G(Km, Ps) ∪K1. Suppose that v is split into two vertices v1

and v2. If d(v1) 6= 1 or d(v2) 6= 1, then v1 or v2 can be split in G′(Km, Ps).
Hence, we can obtain many graphs that are chromatically equivalent with
G(Km, Ps) ∪ 2K1. Repeating the above procedure, by Theorem 2.3.2 we ob-
tain the following corollary.

Corollary 2.3.3. Let n ≥ 3. There exist infinitely many uniquely n-colorable
graphs that are chromatically equivalent.

Remarks

In this chapter, we investigated recursive relations and divisibility of adjoint
polynomials of some special graphs. Theorem 2.2.1 gave a class of graphs
such that their adjoint polynomials satisfy the recursive relation gm(x) =
x[gm−1(x) + gm−2(x)] and Theorem 2.2.2 gave a way to find a necessary and
sufficient condition for h1(Pn)|gm(x), for n ≥ 2. We obtained some necessary
and sufficient conditions for h1(Pn)|h(H), see Theorems 2.2.3, 2.2.4 and 2.2.5.
As an application of the recursive relations of adjoint polynomials, some new
uniquely colorable graphs were obtained in Section 2.3, see Theorems 2.3.1
and 2.3.3. The results in Section 2.2 will be used in Chapters 3 and 4, whereas
the results in Section 2.3 do not play a role in later chapters.



Chapter 3

On the Roots of Adjoint

Polynomials of Graphs

3.1 Introduction

Roots and properties of chromatic polynomials of graphs and the adjoint poly-
nomials of their complements have been studied for several years. In particu-
lar, Brenti, Royle and Wagner [4, 5] investigated the roots and log-concavity
of the coefficients of the adjoint polynomial of a graph. They showed that
h(G, x) has only real roots for many general classes of graphs, such as compa-
rability graphs, triangle-free graphs and so on.

For a polynomial f(x), if a root of f(x) is not real, then the root is said to
be an unreal root. In this chapter, we investigate the minimum real roots of
adjoint polynomials and determine some classes of graphs with unreal roots.
For a graph G, let β(G) denote the minimum real roots of h(G, x). In Section
3.2, we give some basic results on the minimum real roots of adjoint polynomi-
als of some graphs. We determine in Sections 3.3 and 3.4 all connected graphs
such that the minimum real roots of their adjoint polynomials belong to the
interval [−4, 0] and to the interval [−(2 +

√
5),−4), respectively. In Section

3.5, we give the way to construct graphs such that their σ-polynomials have
at least one unreal root. A problem posed by Brenti, Royle and Wagner [5] in
1994 is solved as well.

41
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For a graph G, let f(G, x) denote the characteristic polynomial of G. We
denote by ρ(G) the maximum real roots of f(G, x).

3.2 Some basic properties of the minimum real roots

of an adjoint polynomial

In this section, we give some fundamental inequalities and equalities on the
minimum real roots of the adjoint polynomial of G. The following result can
be found in [74].

Theorem 3.2.1. ([74]) For a tree T , β(T ) = −(ρ(T ))2.

Lemma 3.2.1. ([81]) Let f1(x), f2(x) and f3(x) be polynomials in x with
real positive coefficients. If (i) f3(x) = f2(x) + f1(x) and ∂f3(x) − ∂f1(x) ≡
1(mod 2), (ii) both f1(x) and f2(x) have real roots, and β2 < β1, then f3(x)
has at least one real root β3 such that β3 < β2, where βi denotes the minimum
real roots of fi(x), where i = 1, 2, 3.

Theorem 3.2.2. Let G be a connected graph and let H be a proper subgraph
of G. Then

β(G) < β(H).

Proof. Let q be the number of edges of G. We prove the theorem by induction
on q.

It is obvious that the result holds when q = 1.

Let G be a graph with q ≥ 2 and suppose that the theorem holds when G

has fewer than q edges. Since H is a proper subgraph of G, we can choose an
edge e in G such that either H is a proper subgraph of G−e or H = G−e. So,
select the edge e in G such that H is a subgraph of G − e, then by Theorem
2.1.2 we have

h(G, x) = h(G− e, x) + h(G ∗ e, x).

The graph G−e has p vertices and q−1 edges, and G∗e has p−1 vertices
and at most q − 2 edges. Note that G ∗ e is a proper subgraph of G − e and
each connected component of G ∗ e is a proper subgraph of some connected
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component of G− e, if e is a cut-edge of G. By the induction hypothesis and
Theorem 2.1.1, we have

β(G− e) < β(G ∗ e).

Since ∂h(G) = ∂h(G∗e)+1, from Lemma 3.2.1 we obtain that β(G) < β(G−e).
Note that H is a subgraph of G − e, then, by the induction hypothesis, we
have β(G− e) ≤ β(H). So,

β(G) < β(G− e) ≤ β(H).

¤

From Theorem 1.2.5, β(Cn) = β(T1,1,n−2) and β(Dn) = β(T1,2,n−3), for
n ≥ 4. Then the following corollary follows from Theorem 3.2.2.

Corollary 3.2.1. ([75]) (i) For n ≥ 2, β(Pn) < β(Pn−1);
(ii) For n ≥ 4, β(Cn) < β(Cn−1) and β(Dn+1) < β(Dn);
(iii) For n ≥ 4, β(Dn) < β(Cn) < β(Pn).

An internal x1xk-path of a graph G is a path x1x2x3 · · ·xk(possibly x1 =
xk) of G such that d(x1) and d(xk) are at least 3 and d(x2) = d(x3) = · · · =
d(xk−1) = 2 (unless k = 2), where d(xi) denotes the degree of the vertex xi in
G.

Lemma 3.2.2. ([21]) Let Gxy be the graph obtained from G by inserting a
new vertex on the edge xy of G. If xy is an edge on an internal path of G and
G 6∼= Un, for all n ≥ 6, then ρ(Gxy) < ρ(G).

Theorem 3.2.3. Let G be a tree. If uv is an edge on an internal path of G

and G 6∼= Un, for all n ≥ 6, then β(G) < β(Guv).

Proof: The theorem follows directly from Theorem 3.2.1 and Lemma 3.2.2. ¤

From Lemma 2.3.3 and Figure 2.1, we have

Lemma 3.2.3. Let G be a graph with a triangle uvw and du(G) = 2. Then

xh(G, x) = h(G|u, x).
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For a graph G with a vertex u, the path tree T (G, u) is defined as follows:
T (G, u) is the tree with the paths in G which start at u as its vertices, and
where two such vertices are joined by an edge if one path is maximal subpath
of the other. We call T = T (G, u) the path tree of G which starts at u. In
order to give some feeling about the construction of a path tree, we would like
to give the following example, see Figure 3.1.
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Figure 3.1

Lemma 3.2.4. ([63]) Let G be a triangle-free graph with u ∈ V (G) and let
T = T (G, u) be the path tree of G which starts at u. Then

h(G− u, x)
h(G, x)

=
h(T − u, x)

h(T, x)
.

Theorem 3.2.4. Let G be a graph without triangles and u ∈ V (G) and let
T = T (G, u) be the path tree of G which starts at u. Then β(G) = β(T ).

Proof. From Theorem 3.2.2, we have

β(G) < β(G− u) and β(T ) < β(T − u).

By Lemma 3.2.4, β(G) = β(T ). ¤

Lemma 3.2.5. ([28, 82])
(i) For n ≥ 4, the set of the roots of h1(Cn) is

{−2(1 + cos
2i− 1

n
π)|1 ≤ i ≤ bn

2
c};

(ii) For n ≥ 2, the set of the roots of h1(Pn) is

{−2(1 + cos
2i

n + 1
π)|1 ≤ i ≤ bn

2
c}.
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Many graphs used in the rest of this chapter have been shown in Figures
1.1, 1.2 and 1.3.

Lemma 3.2.6.
(i) β(Cn) > −4 for n ≥ 3, β(Pn) > −4 for n ≥ 2, β(K−

4 ) = −4;
(ii) β(Dn) > −4 for 4 ≤ n ≤ 7, β(D8) = −4, β(Dn) < −4 for n ≥ 9.

Proof: (i) From Lemma 3.2.5, we have that β(Cn) > −4, for n ≥ 3, and
β(Pn) > −4, for n ≥ 2. Since h1(K−

4 ) = x2 + 5x + 4, we have β(K−
4 ) = −4.

(ii) By Theorem 1.2.4, one checks directly that β(D8) = −4. So, by The-
orem 3.2.2, (ii) is true. ¤

Let Zn and Vn be two graphs with n vertices, shown in Figure 3.2.

v
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v

v

v

v

v

v

v

· · ·

v

v

v

v v

v

v

v

· · ·

Zn Vn

Figure 3.2

Lemma 3.2.7. (i) For n ≥ 4, h(F2n+1 ∪K1) = h(Bn+2)h(Dn);
(ii) For n ≥ 6, h(Fn ∪ 2K1) = h(Zn+2) and h(Bn ∪K1) = h(Vn+1);
(iii) h(A7) = h(B7) = x7 + 7x6 + 13x5 + 5x4;
(iv) h(A5) = h(C3(P2, P2)) = h(K1 ∪K−

4 );
(v) h(F9 ∪K1) = h(C4)h(B6) and h(A9 ∪K1) = h(T1,1,1)h(B6);
(vi) h(B10) = h(A6)h(C4) and h(B6) = h(C3(P2, P3));
(vii) h(F7) = h(P4)(x3+5x2+3x) and h(F8) = h(P2)(x6+8x5+18x4+9x3+x2).
(viii) h(F11) = h(P2)h(A7)(x2 + 4x + 1) and h(F17) = h(C3)h(K−

4 )h(B10).

Proof. (i) We can choose an edge e from F2n+1 such that F2n+1 − e =
Dn ∪Dn+1. By Theorems 2.1.1 and 2.1.2,

h(F2n+1) = h(Dn)[h(Dn+1) + xh(Dn−1)].



46 Chapter 3

Let e′ be a pendant edge of Bn+2. From Theorem 2.1.2, we have

h(Bn+2) = xh(Dn+1) + x2h(Dn−1).

So, h(F2n+1 ∪K1) = h(Bn+2)h(Dn).

(ii) Note that Fn and Bn satisfy the condition of Lemma 3.2.3. So, by
Lemma 3.2.3 we know that (ii) holds.

By using Theorems 2.1.1, 2.1.2 and 1.2.4, we can directly verify the equal-
ities (iii) to (viii). ¤

Theorem 3.2.5. (i) β(An+1) < β(An) < −4, β(Bn) < β(Bn+1) and β(Fn) <

β(Fn+1), for all n ≥ 6;
(ii) β(Fn) < β(Bn) < −4, β(Fn) < β(Dm) and β(Bn) < β(Dm), for all n ≥ 6

and m ≥ 4;
(iii) β(Fn) = β(Bm) if and only if n = 2k + 1 and m = k + 2, where k ≥ 4;
(iv) β(B6) = β(A9) < β(A8) < β(B7) = β(A7) < β(B8) < β(B9) < β(B10) =

β(A6), and β(An) ≤ β(Bm), for all n ≥ 7 and m ≥ 7, where the equality
holds if and only if n = m = 7;

(v) β(A6) = β(F17), β(A7) = β(F11), β(A9) = β(F9), and β(An) ≤ β(Fm),
for all n ≥ 9 and m ≥ 9, where the equality holds if and only if n = m = 9.

Proof. (i) From Lemma 3.2.6, β(C4) > −4. Note that β(A5) = −4 and
h(A6) = x(h(A5) + h(C4)). By Lemma 3.2.1, it is obvious that β(A6) <

β(A5) = −4. By Theorem 2.2.1, it follows that

h(An) = x(h(An−1) + h(An−2)), for n ≥ 7.

When n = 7, again by Lemma 3.2.1 we have that β(A7) < β(A6). Repeating
this procedure for n, n ≥ 8, we have that β(An+1) < β(An) < −4, for n ≥ 6.

Note that ρ(T ) > 0 for any tree T . By Theorems 3.2.1 and 3.2.3, we have
that ρ(Vn+2) < ρ(Vn+1) and β(Vn) = −ρ2(Vn). Thus β(Vn+1) < β(Vn+2). By
Lemma 3.2.7(ii), β(Bn) < β(Bn+1), for n ≥ 6.

Similarly, from Theorems 3.2.1 and 3.2.3 and Lemma 3.2.7(ii), one shows
that β(Fn) < β(Fn+1), for n ≥ 6.
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(ii) From Theorem 2.1.2, we can get that

h(Bn) = x(h(Dn−1) + xh(Dn−3)).

Hence, by Theorem 3.2.2 and Lemma 3.2.1, it is not difficult to see that
β(Bn) < β(Dn−1). Since β(Bn) < β(Dn−1) < β(Dn−2), we have β(Bn) <

β(Dm), for all m ≤ n− 1. By (i), it follows that β(Bn) < β(Bm+1) < β(Dm),
for all m ≥ n.

Similarly, we can show that, for any n ≥ 6 and m ≥ 4, β(Fn) < β(Dm).
By Lemma 3.2.6, β(D8) = −4. Thus, by Theorem 3.2.2, we have β(Fn) <

β(Bn) < β(D8) = −4, for n ≥ 6.
(iii) From Lemma 3.2.7, it is clear that β(F2k+1) = β(Bk+2). By (i), we

have that (iii) holds.
(iv) The following follows from (iii) to (v) of Lemma 3.2.7 and (i) of the

theorem,

β(B6) = β(A9) < β(A8) < β(A7) = β(B7) < β(B8) < β(B9) < β(B10) = β(A6).

So, again by (i) of the theorem, (iv) is true.
Finally, (v) can be deduced directly from Lemma 3.2.7 and the results from

(i) to (iv) of the theorem. ¤

Lemma 3.2.8. ([74]) For any n ≥ 2, we have:
(i) h(T1,n,n+3) = h(Pn+1)h(An+3),
(ii) h(T1,n,n) = h(Pn)h(An+2),
(iii) h(T1,n,2n+5) = h(Cn+2)h(T1,n+1,n+2),
(iv) h(T2,2,n) = h(P2)h(An+3),
(v) h(T2,3,3) = x3h(P3)(x3 + 6x2 + 8x + 2),
(vi) β(T1,n,n) = β(T1,n−1,n+2) and β(T1,n,n+1) = β(T1,n−1,2n+3).

Theorem 3.2.6. (i) For n ≥ 2 and m ≥ 6,

β(T1,2,m+1) < β(T1,2,m) < β(T1,2,5) < β(T1,1,n) < β(T1,1,n−1).

(ii) For 3 ≤ l ≤ 11, n ≥ 3 and m ≥ l + 3,

β(T1,l,m+1) < β(T1,l,m) < β(T1,l,l+2) < β(T1,l−1,n) < β(T1,l−1,n−1).



48 Chapter 3

(iii) For T1 ∈ {T1,l1,l2 |3 ≤ l1 ≤ 10, l1 ≤ l2} and T2 ∈ {T1,l1,l2 |1 ≤ l1 ≤ l2}, we
have β(T1) = β(T2) and T1 6∼= T2 if and only if β(T1,n,n) = β(T1,n−1,n+2)
and β(T1,n,n+1) = β(T1,n−1,2n+3).

Proof. (i) and (ii) We denote by Aa,b the graph Qa+1,b+1,1, as shown in Figure
1.3. By Theorems 2.1.1 and 2.1.2, we have that

h(T1,l1,l2) = xh(Pl1+l2+1) + xh(Pl1)h(Pl2)

and

h(Aa,b) = xh(T1,1,a+b+1) + xh(Pa)h(T1,1,b).

By calculation, we have h(A1,1) = x7 + 6x6 + 8x5. By Theorem 1.2.5(ii),
one can get that h(Aa,b) = x2h(Ca+b+3) + x2h(Cb+2)h(Pa), for b ≥ 2. From
Theorem 1.2.4, by calculation we obtain the coefficients of h(T1,l1,l2) and
h(Aa,b), given in Tables 3.1 and 3.2. For each h(G) in Tables 3.1 and 3.2,

h(G, x) =
p(G)∑
i=0

bix
p(G)−i, where p(T1,l1,l2) = l1 + l2 + 2 and p(Aa,b) = a + b + 5.

Using Software Mathematica, we get the minimum real roots of h(T1,l1,l2)
and h(Aa,b), given in Table 3.3.

(l1, l2) The coefficients of h(T1,l1,l2): b0, b1, b2, b3, · · ·
(2, 5) 1, 8, 20, 17, 4

(3, 5) 1, 9, 27, 31, 11

(4, 6) 1, 11, 44, 78, 59, 15, 1

(5, 7) 1, 13, 65, 157, 188, 102, 19

(6, 8) 1, 15, 90, 276, 458, 400, 164, 24, 1

(7, 9) 1, 17, 119, 443, 945, 1159, 776, 250, 29

(8, 10) 1, 19, 152, 666, 1741, 2773, 2636, 1402, 365, 35, 1

(9, 11) 1, 21, 189, 953, 2954, 5812, 7237, 5515, 2393, 515, 41

(10, 12) 1, 23, 230, 1312, 4708, 11054, 17120, 17216, 10787, 3899, 706,
48, 1

(11, 13) 1, 25, 275, 1751, 7143, 19517, 36274, 45644, 37982, 19958, 6111,
945, 55

Table 3.1. The coefficients of h(T1,l1,l2).
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(a, b) The coefficients of h(Aa,b): b0, b1, b2, b3, · · ·
(1, 1) 1, 6, 8

(2, 7) 1, 13, 64, 148, 162, 75, 11

(3, 7) 1, 14, 76, 201, 266, 160, 31

(4, 9) 1, 17, 118, 430, 880, 1002, 589, 152, 13

(5, 11) 1, 20, 169, 785, 2184, 3718, 3795, 2177, 610, 58

(6, 13) 1, 23, 229, 1293, 4556, 10388, 15379, 14443, 8152, 2503, 351, 17

(7, 15) 1, 26, 298, 1981, 8455, 24225, 47328, 62764, 55198, 30744, 10003,

1636, 93

(8, 17) 1, 29, 376, 2876, 14421, 49819, 121296, 209304, 253878, 211718,
116689, 39840, 7574, 671, 21

(9, 19) 1, 32, 463, 4005, 23075, 93380, 272734, 581647, 906015, 1020680,
814606, 445093, 157785, 33292, 3585, 136

(10, 21) 1, 35, 559, 5395, 35119, 162981, 555750, 1414270, 2700775, 3860021,
4085950, 3142790, 1704795, 623400, 143448, 18620, 1140, 25

Table 3.2. The coefficients of h(Aa,b).

(l1, l2) β(T1,l1,l2) (a, b) β(Aa,b)

(2, 5) −4.0000 (1, 1) −4.00000

(3, 5) −4.09529 (2, 7) −4.09529

(4, 6) −4.16035 (3, 7) −4.15875

(5, 7) −4.19353 (4, 9) −4.18970

(6, 8) −4.21145 (5, 11) −4.20829

(7, 9) −4.22153 (6, 13) −4.21937

(8, 10) −4.22736 (7, 15) −4.22597

(9, 11) −4.23080 (8, 17) −4.22993

(10, 12) −4.23286 (9, 19) −4.23232

(11, 13) −4.23411 (10, 21) −4.23378

Table 3.3. The minimum real roots of h(T1,l1,l2) and h(Aa,b).

By Theorems 3.2.2 and 3.2.3, we have

β(Aa,b) < β(Aa,b+1) < β(Aa,b+2) < · · · < β(Aa,b+k), for k ≥ 3, (3.1)
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and

β(Aa,b) < β(T1,a,b+2). (3.2)

From Table 3.3, one sees that β(T1,2,5) = β(A1,1) and β(T1,3,5) = β(A2,7), and
β(T1,l+1,l+3) < β(Al,2l+1) for 3 ≤ l ≤ 10. So, by (3.1) and (3.2) and Theorem
3.2.3, we have:

(a) for l = 1, m ≥ 6 and n ≥ 2, β(T1,2,m+1) < β(T1,2,m) < β(T1,2,5) = β(A1,1)

= β(Un) < β(T1,1,n) < β(T1,1,n−1),

(b) for l = 2, m ≥ 6 and n ≥ 2, β(T1,3,m+1) < β(T1,3,m) < β(T1,3,5) = β(A2,7)

< β(A2,n+6) < β(T1,2,n) < β(T1,2,n−1),

(c) for 3 ≤ l ≤ 10, m ≥ l + 4 and n ≥ 2, β(T1,l+1,m+1) < β(T1,l+1,m) <

β(T1,l+1,l+3) < β(Al,2l+1) < β(Al,n+2l) < β(T1,l,n) < β(T1,l,n−1).

Thus, from (a), (b) and (c), we know that (i) and (ii) of the theorem hold.

(iii) By (i) and (ii) of the theorem and Lemma 3.2.8(ii), we have:

(d) for m ≥ 6 and n ≥ 2, β(T1,3,m+1) < β(T1,3,m) < β(T1,3,5) < β(T1,3,4)

< β(T1,3,3) = β(T1,2,5) < β(T1,1,n) < β(T1,1,n−1),

(e) for m ≥ 6 and n ≥ 12, β(T1,3,m+1) < β(T1,3,m) < β(T1,3,5) < β(T1,2,n) <

β(T1,2,n−1) < β(T1,2,10) < β(T1,2,9) = β(T1,3,4) < β(T1,2,8) < β(T1,2,7) <

β(T1,2,6) < β(T1,3,3) = β(T1,2,5) < β(T1,2,4) < β(T1,2,3) < β(T1,2,2),

(f) for 3 ≤ l ≤ 10, m ≥ l + 4 and n ≥ 2l + 8, β(T1,l+1,m+1) < β(T1,l+1,m) <

β(T1,l+1,l+3) < β(T1,l,n) < β(T1,l,n−1) < β(T1,l,2l+6) < β(T1,l+1,l+2) =

β(T1,l,2l+5) < β(T1,l,2l+4) < · · · < β(T1,l,l+5) < β(T1,l,l+4) < β(T1,l+1,l+1) =

β(T1,l,l+3) < β(T1,l,l+2) < β(T1,l,l+1) < β(T1,l,l),

(g) for l ≥ 11, m ≥ l + 1 and n ≥ 2, β(T1,l+1,m) < β(T1,l+1,l+1) ≤ β(T1,12,12)

= β(T1,11,13) < β(T1,10,n), by Lemma 3.2.8(vi).

From (d), (e), (f) and (g), it is not difficult to see that (iii) holds. ¤

From the theorem, we propose the following.

Problem 3.2.1. Is it true that β(T1,l,l+2) < β(T1,l−1,n), for all l ≥ 3 and
n ≥ 1?
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3.3 Graphs G with β(G) ∈ [−4, 0]

In this section, we determine all connected graphs with β(G) ≥ −4. For
a ≥ 4 and b ≥ 2, we denote by Ca(Pb) the graph obtained from Ca and Pb

by identifying a vertex of Ca with an end-vertex of Pb. For a ≥ 3, b ≥ 2 and
c ≥ 2, let u and w be two different vertices of Ca, we denote by Ca(Pb, Pc) the
graph obtained from Ca, Pb and Pc by identifying u with an end-vertex of Pb

and w with an end-vertex of Pc, respectively, see Figure 3.3.
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Lemma 3.3.1. (i) β(Cn(Pm)) ≤ −4, for n ≥ 4 and m ≥ 2, and the equality

holds if and only if n = 4 and m = 2;
(ii) β(Cn(Pm1 , Pm2)) ≤ −4, for n ≥ 3 and mi ≥ 2, where i = 1, 2, and the

equality holds if and only if n = 3 and m1 = m2 = 2.

Proof. (i) We prove (i) by considering the following cases.

Case 1. n = 4 and m = 2.

Since h1(C4(P2)) = x2 + 5x + 4, we have β(C4(P2)) = −4.

Case 2. n = 4 and m ≥ 3.

Clearly, C4(P2) is a proper subgraph of C4(Pm). We have β(C4(Pm)) < −4,
by Theorem 3.2.2.

Case 3. n ≥ 5 and m = 2.

Note that h1(C5(P2)) = x3+6x2+8x+1. By calculation, β(C5(P2)) < −4.
When n ≥ 6, it follows, from Theorem 2.2.1, that

h(Cn(P2)) = x(h(Cn−1(P2)) + h(Cn−2(P2)).
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Since β(C5(P2)) < β(C4(P2)) = −4 and ∂h(Cn(P2)) = ∂(xh(Cn−2(P2))) − 1,
we know, from Lemma 3.2.1, that

β(Cn(P2)) < β(Cn−1(P2)) < · · · < β(C4(P2)) = −4.

Case 4. n ≥ 5 and m ≥ 3.
Since Cn(P2) is a proper subgraph of Cn(Pm), by Theorem 3.2.2 we have

β(Cn(Pm)) < −4.

From Case 1 to Case 4, we have that, for n ≥ 4 and m ≥ 2, β(Cn(Pm)) <

−4 except for β(C4(P2)) = −4. This completes the proof of (i).
(ii) We distinguish the following cases.

Case 1. n = 3 and m1 = m2 = 2.
By calculation, we have that h1(C3(P2, P2)) = x2 + 5x + 4. So, we get

easily that β(C3(P2, P2)) = −4.

Case 2. n = 3 and m1 ≥ 3, or m2 ≥ 3.
It is not hard to see that C3(P2, P2) is a proper subgraph of C3(Pm1 , Pm2),

for n = 3 and m1 ≥ 3, or n = 3 and m2 ≥ 3. It follows, from Theorem 3.2.2,
that β(C3(Pm1 , Pm2)) < −4.

Case 3. n ≥ 4, m1 ≥ 2 and m2 ≥ 2.
Obviously, Cn(Pm1 , Pm2) must have a proper subgraph Cn(Pm1), where

m1 ≥ 2 and n ≥ 4. By Theorem 3.2.2 and (i), we have β(Cn(Pm1 , Pm2)) < −4.
From the above cases, it is not difficult to see that, for n ≥ 4, m1 ≥ 2 and

m2 ≥ 2, β(Cn(Pm1 , Pm2)) < −4 except for β(C3(P2, P2)) = −4. ¤

Lemma 3.3.2. ([19, 21]) Let T be a tree. Then
(i) ρ(G) = 2 if and only if

G ∈ {T1,2,5, T2,2,2, T1,3,3,K1,4} ∪ U .

(ii) ρ(G) < 2 if and only if G ∈ {K1, T1,2,i|i = 2, 3, 4} ∪ P ∪ T1.

Theorem 3.3.1. Let G be a connected graph without triangles. Then
(i) β(G) = −4 if and only if

G ∈ {T1,2,5, T2,2,2, T1,3,3,K1,4, C4(P2)} ∪ U ;

(ii) β(G) > −4 if and only if G ∈ {K1, T1,2,i|i = 2, 3, 4} ∪ P ∪ C ∪ T1.
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Proof. We prove the theorem by distinguishing the following cases.

Case 1. G is a tree.
By Theorem 3.2.1, β(G) = −(ρ(G))2. The theorem follows from Lemma

3.3.2 immediately.

Case 2. G is a connected graph without triangles and q(G) ≥ p(G).
If p(G) ≥ 6 and G 6∼= Cn, then G must contain either a subgraph Cn(P2),

where n ≥ 5, or a proper subgraph C4(P2). By Theorem 3.2.2 and Lemma
3.3.1, we have that β(G) < β(C4(P2)) = −4, or β(G) ≤ β(Cn(P2)) < −4, for
n ≥ 5. If p(G) ≤ 5 or G ∼= Cn, then G must be Cn or C4(P2). By Lemmas
3.2.6 and 3.3.1, β(Cn) > −4, for n ≥ 3, and β(C4(P2)) = −4. Hence if G is a
connected graph without triangles and q(G) ≥ p(G), then β(G) = −4 if and
only if G = C4(P2) and β(G) > −4 if and only if G = Cn, where n ≥ 3.

This completes the proof of the theorem. ¤

Theorem 3.3.2. Let G be a connected graph. Then
(i) β(G) = −4 if and only if

G ∈ {T1,2,5, T2,2,2, T1,3,3,K1,4, C4(P2), C3(P2, P2),K−
4 , D8} ∪ U ;

(ii) β(G) > −4 if and only if

G ∈ {K1} ∪ {T1,2,i|i = 2, 3, 4} ∪ {Di|i = 4, 5, 6, 7} ∪ P ∪ C ∪ T1.

Proof. Suppose that G is a graph without triangles. Then, from Theorem
3.3.1, the theorem holds.

Suppose that G contains only one triangle. It is not hard to see that any
graph G, except for Di, 4 ≤ i ≤ 8, C3(P2, P2) and C3, contains a proper
subgraph G∗ such that G∗ ∈ {D8,C3(P2, P2), K1,4, Un|n ≥ 6}. By Lemma
3.2.6, we have that β(D8) = −4, β(Di) > −4, for i = 4, 5, 6, 7, and β(C3) >

−4. Note that β(C3(P2, P2)) = β(K1,4) = β(Un) = −4. Hence the theorem
follows from Theorem 3.2.2.

Suppose that G contains at least two triangles. Then, any graph, except
for K−

4 , must contain a proper subgraph G∗ such that G∗ ∈ {Un, C3(P2, P2),
K−

4 ,K1,4|n ≥ 6}. Since β(G∗) = β(K−
4 ) = −4, by Theorem 3.2.2 we have that

the theorem holds. ¤
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From Theorem 3.3.2, we have the following corollaries.

Corollary 3.3.1. Let G be a connected graph. Then β(G) ≥ −3 if and only
if G ∈ {P2, P3, P4, P5, C3, T1,1,1,K1}.

Theorem 3.3.2 means that the minimum real roots of σ(G, x) are greater
than or equal to −4 if and only if each component of G is one of subgraphs of
the following graphs:

T1,2,5, T2,2,2, T1,3,3, K1,4, C4(P2), C3(P2, P2),K−
4 , D8, Un+3, Cn, where n ≥ 3.

Corollary 3.3.2. Let G be a connected graph with β(G) ≥ −4. Then all the
roots of σ(G, x) are real.

3.4 Graphs G with β(G) ∈ [−(2 +
√

5),−4)

In this section, our goal is to determine all connected graphs with β(G) ∈
[−(2 +

√
5),−4). Let Ta,b,c and Qa,b,c be the graphs shown in Figure 1.3. The

following lemmas can be found from [19, 20].

Lemma 3.4.1. ([19]) If G is a tree, then 2 < ρ(G) ≤ (2 +
√

5)1/2 if and only
if G is one of the following graphs:
(i) Ti,j,k for i = 1, j = 2, k > 5, or i = 1, j > 2, k > 3, or i = j = 2, k > 2,

or i = 2, j = k = 3.

(ii) Qi,j,k for (i, j, k) ∈ {(2, 1, 2), (3, 4, 2), (3, 5, 3), (4, 7, 3), (4, 8, 4)},
or i ≥ 2, j ≥ j∗(i, k), k ≥ 1 where (i, k) 6= (2, 1) and

j∗(i, k) =





i + k + 1 for i ≥ 4,

3 + k for i = 3,

k for i = 2.

From Theorem 3.2.1 and Lemma 3.4.1, we have

Lemma 3.4.2. If G is a tree, then −(2 +
√

5) ≤ β(G) < −4 if and only if G

is one of the graphs listed by Lemma 3.4.1.

Lemma 3.4.3. ([20]) Let G 6∼= K1,4. If G is a connected graph with at
least three vertices of degree 3 or with at least one vertex of degree 4, then
ρ(G) > (2 +

√
5)1/2.
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Lemma 3.4.4. Let G be a connected graph with at least three vertices of
degree 3 or with at least one vertex of degree 4. If G is not a tree, then
β(G) < −(2 +

√
5).

Proof. Suppose that G has at least one vertex of degree 4 and G is not a tree.
Then G must contain a subgraph Qi, as shown in Figure 3.4, where i = 1, 2.

w

w w

w w

w

w w

w w w

w w

w

w w

w

w w

w

w w

w

Q1 Q2 Q3 Q4

Figure 3.4

By calculation, we have that h1(Q1) = h1(Q2) = x2 +5x+3 and h1(K4) =
h1(Q3) = h1(Q4) = x3 + 6x2 + 7x + 1. It is not hard to verify that β(Qi) <

−(2 +
√

5), for each i. From Theorem 3.2.2, the lemma follows.
Suppose that G has at least three vertices of degree 3 and G is not a tree.

We distinguish the following three cases:

Case 1. G is a triangle-free graph.
Let u, v and w be three vertices of degree 3 in G and let NG(u) = {v1, w1, u

′},
NG(v) = {vi, v

′, v′′} and NG(w) = {wj , w
′, w′′}. Let T = T (G, u) be the path

tree of G which starts at u. Since G is connected, we assume that uv1v2 · · · viv

(respectively uw1w2 · · ·wjw) is a shortest path between u and v (respectively u

and w). Clearly, v′ 6= vi. One sees that v′ 6= u and v′ 6= vt, for t = 1, 2, · · · , i−1
(otherwise uv1 · · · vtv is a shorter path than uv1v2 · · · viv, which is a con-
tradiction.). Thus, we have that v′, v′′ 6∈ {u} ∪ {vt|t = 1, 2, · · · , i} and
w′, w′′ 6∈ {u}∪{wt|t = 1, 2, · · · , j}. It is not hard to see that (u), (uv1v2 · · · viv)
and (uw1w2 · · ·wjw) are three different vertices of degree 3 in the path tree T

of G. From Lemma 3.4.3 and Theorem 3.2.4, it follows that β(G) = β(T ) <

−(2 +
√

5).

Case 2. G contains three vertices of degree 3, say v1, v2, v3, such that v1, v2

and v3 are vertices of the triangle v1v2v3.
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It is not difficult to see that G must contain a subgraph H such that
H ∈ {K4, Q3, Q4}. Since β(H) < −(2 +

√
5), by Theorem 3.2.2 we have

β(G) = β(H) < −(2 +
√

5).

Case 3. G has triangles and each triangle of G contains at least one vertex of
degree 2. By splitting a vertex of degree 2 of each triangle in G until the graph
does not contain triangle any more, we obtain a graph H. By Lemma 3.2.3,
it follows that h1(H) = h1(G). Clearly, H contains at least three vertices of
degree 3 and has no triangle. So, by Case 1, β(G) = β(H) < −(2 +

√
5). ¤

Lemma 3.4.5. Let G be a connected graph with only one vertex of degree 3
and with at least one cycle. Then −(2 +

√
5) ≤ β(G) < −4 if and only if G is

one of the following graphs: G ∼= C3(Pb), for b ≥ 7, or G ∼= Ca(P2), for a ≥ 5,
or G ∼= C4(P3), where Ca(Pb) is the graph shown in Figure 3.3.

Proof. Clearly, G is connected and has only one vertex of degree 3 and at
least one cycle if and only if G ∼= Ca(Pb), where a ≥ 3 and b ≥ 2.

Suppose a = 3. From Theorem 1.2.5, h1(Ca(Pb)) = h1(T1,2,b−1). From
Lemma 3.4.2, β(T1,2,b−1) ∈ [−(2 +

√
5),−4) if and only if b ≥ 7.

Suppose a ≥ 4. Then Ca(Pb) does not contain a triangle. Let v ∈ V (G)
and d(v) = 3 and let T = T (G, v). From Theorem 3.2.4, β(G) = β(T ) and
T = Ta−1,a−1,b−1. From Lemma 3.4.2, −(2 +

√
5) ≤ β(T ) < −4 if and only if

a = 4 and b = 3 or b = 2 and a ≥ 5. So, from Theorem 3.2.4, we have that
−(2 +

√
5) ≤ β(Ca(Pb)) < −4 if and only if a = 4 and b = 3 or b = 2 and

a ≥ 5.

From the above arguments, the lemma follows. ¤

In the rest of this section, we use the following graphs shown in Figure 3.5.

Lemma 3.4.6. Let G be a connected graph with only two vertices of degree 3
and at least one cycle. Then, −(2 +

√
5) ≤ β(G) < −4 if and only if G is one

of the following graphs:
(i) C3(P2, P3);
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(ii) Pn(a, b) for a = b = 3 and n ≥ 5.
(iii) Cn(a, b, c) for a = 1, n = 3 and b = 5 and c = 3, or b ≥ 1 if c = 1,

or b ≥ 4 if c = 2, or b ≥ c + 3 if c ≥ 3.

Proof. Let G be a connected graph with only two vertices of degree 3 and at
least one cycle. Then G is one of the following graphs.

Ca(Pb, Pc), Pn(a, b), Cn(a, b, c),W (a, b, c),

where Ca(Pb, Pc) is the graph shown in Figure 3.3 and the others are the
graphs shown in Figure 3.5.

We distinguish the following cases:

Case 1. G has no triangle and G ∈ {Ca(Pb, Pc), Pn(a, b), Cn(a, b, c), W (a, b, c)}.
Obviously, G must contain at least one cycle of length at least 4. Now

we choose a vertex x in G such that the path tree T = T (G, x) which starts
at x contains at least three vertices of degree 3. For Pn(a, b) and Cn(a, b, c),
take x = v, shown in Figure 3.5. For Ca(Pb, Pc), take x = v if uw is an
edge of Ca(Pb, Pc), otherwise x = u, shown in Figure 3.3. For W (a, b, c), we
choose a vertex of degree 3 as x if min{a, b, c} ≥ 1, otherwise x is a vertex of
degree 2 in W (a, b, c). Recalling that every G has no triangle, we see that each
T = T (G, x) contains at least three vertices of degree 3. Thus, by Theorem
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3.2.4 and Lemma 3.4.4, we have β(G) = β(T ) < −(2 +
√

5).

Case 2. G has some triangles.

Case 2.1. Ca(Pb, Pc) and a = 3.
Splitting the vertex of degree 2 in C3 of Ca(Pb, Pc), from Lemma 3.2.3 we

have h1(Ca(Pb, Pc)) = h1(Qb,1,c−1). By Lemma 3.4.2, there is only one graph
Q2,1,2 such that β(G) = β(Q2,1,2) > −(2 +

√
5). So, b = 2 and c = 3. Hence

β(C3(P2, P3)) > −(2 +
√

5), which is (i).

Case 2.2. Cn(a, b, c) and n = 3.
Let H be the graph obtained from Cn(a, b, c) by splitting the vertex v of

degree 2 in C3. By Lemmas 3.2.3 and 3.4.2, we have that if min{a, c} ≥ 2,
then β(G) = β(H) < −(2 +

√
5). So, min{a, c} = 1. Assume that a = 1.

Then H ∼= Q3,b,c and β(C3(1, b, c)) = β(Q3,b,c). Note that Q3,b,c
∼= Qc+1,b,2.

By Lemma 3.4.2, it follows that β(Q3,b,c) > −(2 +
√

5) if and only if b = 5
and c = 3, or b ≥ 1 for c = 1, or b ≥ 4 for c = 2, or b ≥ c + 3 for c ≥ 3, which
implies that (iii) holds.

Case 2.3. Pn(a, b)) and a = 3 or b = 3.
Suppose that Pn(a, b) has exactly one triangle, say a = 3 and b ≥ 4. Let H

denote the graph obtained by splitting the vertex v of degree 2 in C3 of Pn(a, b).
By Lemma 3.2.3, h1(H) = h1(Pn(a, b)) and H ∈ {Cb(1, n−1, 2)|n ≥ 4, b ≥ 4}.
From the proof of Case 1, we have β(H) < −(2 +

√
5) for each H.

Suppose that Pn(a, b) has exactly two triangles. Clearly, a = b = 3. Split-
ting a vertex of degree 2 in each C3 of Pn(a, b), we get the graph Q3,n−1,2. From
Lemma 3.2.3, h1(Pn(3, 3)) = h1(Q3,n−1,2). By Lemma 3.4.2, β(Q3,n−1,2) >

−(2 +
√

5) if and only if n ≥ 5, which is (ii).

Case 2.4. W (a, b, c).
Suppose that W (a, b, c) contains only one triangle. Assume that a ≥ 2,

b = 1 and c = 0. Splitting the vertex of degree 2 in C3 of W (a, b, c), by
Lemma 3.2.3 we get a graph H without triangles such that h1(H) = h1(G)
and H ∈ {Ca+2(P2, P2)}. By the proof of case 1, there is no graph H such
that β(H) > −(2 +

√
5).

Suppose that Pn(a, b) contains exactly two triangles. Then W (a, b, c) ∼=
K−

4 . It can be verified that β(K−
4 ) = −4.



On the Roots of Adjoint Polynomials of Graphs 59

From the above arguments, we know that the theorem holds. ¤

From Lemmas 3.4.2, 3.4.4, 3.4.5 and 3.4.6, we find all connected graphs
with −(2 +

√
5) ≤ β(G) < −4. Note that C3(Pb) = Db+2, for b ≥ 2, Ca(P2) =

Aa+1, for a ≥ 4, and Pn(3, 3) = Fn+4, for n ≥ 2. So, we have

Theorem 3.4.1. Let G be a connected graph. Then −(2 +
√

5) ≤ β(G) < −4
if and only if G is one of the following graphs:
(i) Ta,b,c for a = 1, b = 2, c > 5, or a = 1, b > 2, c > 3, or a = b = 2, c > 2,

or a = 2, b = c = 3;
(ii) Qa,b,c for (a, b, c) ∈ {(2, 1, 2), (3, 4, 2), (3, 5, 3), (4, 7, 3), (4, 8, 4)},

or a ≥ 2, b ≥ b∗(a, c), c ≥ 1, where (a, c) 6= (2, 1) and

b∗(a, c) =





a + c + 1 for a ≥ 4,

3 + c for a = 3,

c for a = 2;
(iii) Dn for n ≥ 9;
(iv) An for n ≥ 6;
(v) Fn for n ≥ 9;
(vi) C3(a, b, c) for a = 1, b = 5 and c = 3, or a = 1 and b ≥ 1 if c = 1,

or a = 1 and b ≥ 4 if c = 2, or a = 1 and b ≥ c + 3 if c ≥ 3;
(vii) G ∼= C4(P3), or G ∼= C3(P2, P3).

From (1.1) and Theorem 3.3.2, we have

Theorem 3.4.2. Let G be a connected graph with the minimum real roots of
its σ-polynomial in the interval [−(2+

√
5),−4). Then, every component of G

is one of the graphs listed in Theorem 3.4.1.

Corollary 3.4.1. Let G be a connected graph with β(G) ≥ −(2 +
√

5). Then
all the roots of σ(G, x) are real.

3.5 The complex roots of adjoint polynomials of

graphs

For a graph G with n vertices, if σ(G, x) has at least one complex root, then
G is said to be a σ-unreal graph. We define η(G) = |E(G)|/(

n
2

)
, where η(G)



60 Chapter 3

is said to be the edge-density of G. We denote by η(n) the minimum edge-
density over all σ-unreal graphs with n vertices. In [5], Brenti, Royle and
Wagner determined all σ-unreal graphs with 8 and 9 vertices. Furthermore,
they proposed the following problem.

Problem 3.5.1. ([5]) For a positive integer n, let η(n) be the minimum edge-
density over all σ-unreal graphs with n vertices. Give a good lower bound for
η(n). In particular, is there a constant c > 0 such that η(n) > c for sufficiency
large n?

In this section, we study the unreal roots of σ(G, x) by applying the results
of adjoint polynomials. We establish a way of constructing σ-unreal graphs
and give a negative answer to Problem 3.5.1.

If all roots of h(G, x) are real roots, then G is called h-real, otherwise G is
called h-unreal. From (1.1), we have

Lemma 3.5.1. For any graph G, G is h-unreal if and only if G is σ-unreal.

Let H and G be two graphs and let v ∈ V (H) and u ∈ V (G). By Gt
u(Hv)

we denote the graph obtained from G and t copies of H and a star K1,t by
identifying every vertex of degree 1 of K1,t with vertex v of a copy of H and
identifying the center of K1,t with vertex u of G, see Figure 1.4.

Lemma 3.5.2. Let H and G be two graphs and let v ∈ V (H) and u ∈ V (G).
Then

h(Gt
u(Hv), x) = [h(H, x)]t

[
h(G, x) +

txh(H − v, x)
h(H, x)

h(G− u, x)
]

.

Proof. By induction on t. When t = 1, by Theorems 2.1.1 and 2.1.2 we have

h(Gu(Hv), x) = h(H, x)h(G, x) + xh(H − v, x)h(G− u, x)
= [h(H, x)][h(G, x) + xh(H−v,x)

h(H,x) h(G− u, x)].

Suppose that the result holds for k, k ≥ 2. By Theorems 2.1.1 and 2.1.2,

h(Gk+1
u (Hv), x) = h(Gk

u(Hv), x)h(H, x) + xh(H − v, x)[h(H, x)]kh(G− u, x).
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By the induction hypothesis, we have

h(Gk+1
u (Hv), x) = [h(H, x)]k+1h(G, x) + xk[h(H,x)]kh(H − v, x)×

h(G− u, x) + xh(H − v, x)[h(H,x)]kh(G− u, x)

= [h(H, x)]k+1
[
h(G, x) + (k+1)xh(H−v,x)

h(H,x) h(G− u, x)
]
.

¤

The following two theorems follow directly from Theorems 2.1.1 and 2.1.2,
and Lemmas 3.5.1 and 3.5.2.

Theorem 3.5.1. Let H be a σ-unreal graph and let G be a graph with k

components G1, G2, . . ., Gk. Then H ∪ (∪k
i=1Gi) is σ-unreal.

Theorem 3.5.2. Let H be a σ-unreal graph and let G be an arbitrary graph,
and let v ∈ V (H) and u ∈ V (G). If t ≥ 2, then Gt

u(Hv) is σ-unreal.

We now construct two classes of σ-unreal graphs such that η(G) → 0 as
n →∞.

Class 1. Let H be a σ-unreal graph with m vertices, where m is a constant.
By Theorem 3.5.1, Kn−m ∪H is σ-unreal. Since

(n−m)m < |E(Kn−m ∪H)| < (n−m)m +
(

m

2

)

and V (Kn−m ∪H) = n, we have η(Kn−m ∪H) → 0 as n →∞.

Class 2. Let H be a σ-unreal graph with m vertices and G = Kn−tm, and let
v ∈ V (H) and u ∈ V (G), where m and t are constants. By Theorem 3.5.2,
Gt

u(Hv), for t ≥ 2, is σ-unreal. Since

t(n− tm)m +
(

t

2

)
m2− t < |E(Gt

u(Hv))| < t(n− tm)m +
(

t

2

)
m2 +

(
m

2

)
t− t

and V (Gt
u(Hv)) = n, we have η(Gt

u(Hv)) → 0 as n →∞.

In [5], all σ-unreal graphs with 8 and 9 vertices, namely, 2 σ-unreal graphs
with 8 vertices and 22 σ-unreal graphs with 9 vertices, were given. Without
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loss of generality, assume that H is a graph with m vertices such that H is a
σ-unreal graph. Since n is arbitrarily large, we may assume n ≥ tm+1 for any
positive integer t. Take Hi = Kn−im, where i = 1, 2, . . . , t. Let v ∈ V (H). By
H i

i (Hv) we denote the graph obtained from Hi and i copies of H and a star
K1,i by identifying every vertex of degree 1 of K1,i with vertex v of a copy of
H and identifying the center of K1,i with a vertex of Hi, where i = 2, 3, . . . , t.
Note that |V (H1 ∪H)| = |V (H i

i (Hv))| = n. From the above discussion, it is
not difficult to see that

(i) H1 ∪H, H2
2 (Hv), H3

3 (Hv), . . ., Ht
t (Hv) is a σ-unreal graph sequence,

i.e., each graph of the graph sequence is σ-unreal;

(ii) η(H1 ∪H) → 0 and η(H i
i (Hv)) → 0 as n →∞, where i = 2, 3, . . . , t.

Therefore, from the definition of η(n), it is clear that η(n) → 0 as n →∞. So,
we have the following result.

Theorem 3.5.3. Let H be a graph with m vertices and v ∈ V (H) such that
H is σ-unreal. Let t be a positive integer and Hi = Kn−mi. Then there exists
a σ-unreal graph sequence H1 ∪H, H2

2 (Hv), H3
3 (Hv), . . ., Ht

t (Hv) such that
η(H1 ∪H) → 0 and η(H i

i (Hv)) → 0 as n →∞, where i = 2, 3, . . . , t, moreover
η(n) → 0 as n →∞.

It is obvious that Theorem 3.5.3 answers Problem 3.5.1 negatively.

For any rational number c = p
q with 0 ≤ c ≤ 1, p and q are positive

integers and p ≤ q. In the following we construct two classes of graphs G

such that η(G) → c as n → ∞. Let s be a constant. Without any confusion,
we simply denote by Kn − s the graph obtained by removing s edges from
Kn. Since q(Kn−tm) > c

2 [(n−m)2 − s1], for sufficiency large n, we may take
G = Kn−m − c

2 [(n − m)2 − s1] and F = Kn−tm − c
2 [(n − tm)2 − s2], where

2q|[(n−m)2−s1] and 2q|[(n− tm)2−s2], 0 ≤ s1, s2 < 2q. Let H be a σ-unreal
graph with m vertices, and let v ∈ V (H) and u ∈ V (F ). By Theorem 2.1.1
and Lemma 3.5.1 we have that G1 = G ∪H and G2 = F t

t (Hv) are σ-unreal
graphs with n vertices, where t ≥ 2. Note that

(n−m)m+
c

2
[(n−m)2−s1] < |E(G1)| < (n−m)m+

(
m

2

)
+

c

2
[(n−m)2−s1]
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and

(n− tm)m+
(

t

2

)
m2+

c

2
[(n− tm)2 − s2]− t< |E(G2)|<

(n− tm)m+
(

t

2

)
m2+

(
m

2

)
t+

c

2
[(n− tm)2 − s2]− t.

Since m, s1, s2, c and t are constants, we have

lim
n→∞

E(G1)(
n
2

) = lim
n→∞

c
2 [(n−m)2 − s1]

n(n−1)
2

= c

and

lim
n→∞

E(G2)(
n
2

) = lim
n→∞

c
2 [(n− tm)2 − s2]

n(n−1)
2

= c.

Hence
lim

n→∞ η(G1) = lim
n→∞ η(G2) = c.

From the above argument, we have the following result.

Theorem 3.5.4. Let H be a graph with m vertices and v ∈ V (H) such that
H is σ-unreal. Let t be a positive integer and Hi = Kn−mi− p

2q [(n− im)2−si],
where i = 1, 2, . . . , t and (n − im)2 ≡ si(mod 2q). Then for any rational
number 0 ≤ p/q ≤ 1, there exists a σ-unreal graph sequence H1 ∪H, H2

2 (Hv),
H3

3 (Hv), . . ., Ht
t (Hv) such that η(H1 ∪H) → p/q and η(H i

i (Hv)) → p/q as
n →∞, where i = 2, 3, . . . , t. ¤

Remarks

In this chapter we studied some properties of the roots of adjoint polynomials.
Firstly, we gave two basic equalities in Theorems 3.2.1 and 3.2.4. Theorem

3.2.1 established an equality between the minimum real roots of the adjoint
polynomial of a tree with the largest roots of its characteristic polynomial.
Theorem 3.2.4 also established an equality between the minimum real roots of
the adjoint polynomial of a graph without triangles with those of the adjoint
polynomial of its path-tree. By using these theorems, we translated some
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results on the largest roots of characteristic polynomials of trees to those on
minimum real roots of their adjoint polynomials, see Theorems 3.2.3 and 3.3.1
and (i) and (ii) of Theorem 3.4.1.

Secondly, we obtained a basic inequality on the minimum real roots of the
adjoint polynomials of a graph and of its proper subgraphs in Theorem 3.2.2.
By employing Theorem 3.2.2 and the results above, we gave some inequalities
on minimum real roots of the adjoint polynomials of some graphs used in
Chapter 4, see Theorems 3.2.5 and 3.2.6, and determined all connected graphs
such that the minimum real roots of their adjoint polynomials belong to the
interval [−4, 0], see Theorem 3.3.2, and to the interval [−(2 +

√
5),−4), see

Theorem 3.4.1. The results in Sections 3.2 to 3.4 will play an important role
in Chapters 4 and 5.

Finally, in Section 3.5 we gave a method to construct graphs such that
their σ-polynomials have at least one complex root. A problem posed in 1994
by Brenti, Royle and Wagner in Canadian Journal of Mathematics was solved
in Theorems 3.5.3 and 3.5.4. The results in this section are not used in the
coming chapters.



Chapter 4

The Chromaticity of Some

Dense Graphs

4.1 Introduction

Since the notion of chromatically unique graphs was first introduced by Chao
and Whitehead [8] in 1978, many classes of chromatically unique graphs have
been found by employing the chromatic polynomials of graphs [43, 44] and
the adjoint polynomials of their complements [58]. In fact, the chromatic
polynomials of graphs are more useful than the adjoint polynomials of their
complements when studying the chromaticity of sparse graphs, whereas the
adjoint polynomials of the complements of graphs are more effective than
their corresponding chromatic polynomials when studying the chromaticity of
dense graphs. On the other hand, many algebraic properties of the adjoint
polynomials, such as the recursive relations, divisibility, reducibility over the
rational number field and so on, are very useful in the study of chromaticity
of the complement of a sparse graph. Indeed, many classes of chromatically
unique graphs have been found by applying these properties, see [29] and
[58, 62]. In particular, Liu and Li proved that if G = ∪iPni , then Kn − E(G)
is χ–unique when Pni is irreducible [52, 60]. In [58], Liu conjectured that
Pn is χ-unique if n 6= 4 and n is even. Du obtained that if G is a 2-regular
graph without C4 as its subgraph or G is ∪k

i=1Pni , where ni is even and

65
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ni 6≡ 4(mod 10), then G is χ-unique [32]. Ye and Li [79] characterized all
adjointly equivalent graphs of Pn for n ≥ 1. Very recently, Dong, Teo, Little
and Hendy in [29] investigated the chromaticity of complements of H1 = aK3∪
bD4∪

⋃
1≤i≤s

Pui∪
⋃

1≤j≤t
Cvj , where a, b ≥ 0, ui ≥ 3, ui 6≡ 4(mod 5), vj ≥ 4, and of

H2 = r0K1∪ r1K3∪
⋃

aiP2i, where r0, r1, ai, i ≥ 0. They obtained a necessary
and sufficient condition for Hi to be chromatically unique, where i = 1, 2.

Our main goal in this chapter is to investigate the chromaticity of some
dense graphs by using results obtained in the preceding two chapters. In
Section 4.2 we give some basic results on adjoint polynomials. In Section 4.3,
we establish a necessary and sufficient condition for chromatic uniqueness of
graphs G with δ(G) ≥ |V (G)| − 3 and of the graphs ∪iUni , where ni ≥ 6. In
Section 4.4 a necessary and sufficient condition for two graphs H and G with
β(G) = β(H) ≥ −4 to be adjointly equivalent is obtained. Two conjectures
proposed by Dong, Teo, Little and Hendy are solved. In Sections 4.5 to 4.7,
we obtain some new results on the adjoint uniqueness of graphs.

4.2 Some basic results

In this section, we introduce some basic results used in this chapter. Let G

be a graph with q edges. The character (or invariant R1(G)) of a graph G is
defined as

R1(G) =

{
0, if q = 0,

b2(G)− (
b1(G)−1

2

)
+ 1, if q > 0,

where b1(G) and b2(G) are the second and the third coefficients of h(G), re-
spectively.

Lemma 4.2.1. ( [50]) Let G be a graph with k components G1, G2, . . . , Gk.
Then

R1(G) =
k∑

i=1

R1(Gi).

It is not hard to see that R1(G) is an invariant of graphs. So, for any two
graphs G and H, we have R1(G) = R1(H) if h(G, x) = h(H,x) or h1(G, x) =
h1(H, x).
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Lemma 4.2.2. ([31, 62]) Let G be a connected graph and e ∈ E(G). Then

R1(G) = R1(G− e)− dG(e) + 1.

Lemma 4.2.3. ([31]) Let G be a connected graph with p vertices. Then
(i) R1(G) ≤ 1, and the equality holds if and only if G ∈ {Pp,K3|p ≥ 2}.
(ii) R1(G) = 0 if and only if G ∈ {K1, Cp, Dp, Tl1,l2,l3 |p ≥ 4, li ≥ 1, i = 1, 2, 3}.
(iii) R1(G) = −1 and q(G) ≥ p(G) + 1 if and only if G ∈ {Fp|p ≥ 6} ∪ {K−

4 }.
(iv) R1(G) = −2 and q(G) ≥ p(G) + 2 if and only if G ∼= K4.

Lemma 4.2.4. ([51, 53]) Let G be a graph with p vertices and q edges. De-
note by M the set of vertices of the triangles in G and by M(i) the number
of triangles which cover the vertex i in G. If the degree sequence of G is
(d1, d2, d3, · · · , dp), then
(i) b0(G) = 1, b1(G) = q;

(ii) b2(G) =
(
q+1
2

)− 1
2

p∑
i=1

d2
i + NA(G);

(iii) b3(G) = 1
6q(q2 +3q+4)− q+2

2

p∑
i=1

d2
i + 1

3

p∑
i=1

d3
i +

∑
ij∈E(G)

didj−
∑

i∈M

M(i)di+

(q + 2)NA(G) + N(K4), where b0(G), b1(G), b2(G), b3(G) are the first four
coefficients of h(G, x) and N(K4) is the number of subgraphs isomorphic
to K4 in G.

Lemma 4.2.5. ([32]) If mi ≥ 3 and mi 6= 4, then ∪iCmi is χ–unique.

Lemma 4.2.6. ([82]) If n ≥ 2, then h1(Pn) is irreducible if and only if n = 3
or n + 1 is prime.

4.3 The chromaticity of graphs G with δ(G) ≥ |V (G)|−
3

By using some properties of the adjoint polynomials of graphs, the authors
in [27–29] and in [51–62] gave many chromatically unique graphs. One can
see that most of the chromatically unique graphs are graphs of the form ∪iHi

such that Hi ∈ {K1, Pn, Cm|n ≥ 2,m ≥ 3} for any i. However, they did not
give any sufficient and necessary condition for all graphs of the form ∪iHi to
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be χ-unique. In this section, by using the fact that β(G) = β(H) if G ∼ H,
we obtain a sufficient and necessary condition for all graphs of the form ∪iHi

to be χ-unique. We also obtain a sufficient and necessary condition for all
graphs of the form ∪iUni to be χ-unique, where ni ≥ 6.

From Lemma 3.2.5, it is easy to prove the following Lemma.

Lemma 4.3.1. ([81]) (i) (x + 3) 6 |h1(P2n);
(ii) For n ≥ 1,m ≥ 4, (h1(Cm), h1(P2n)) = 1;
(iii) For n1 ≥ 3, n2 ≥ 4, h1(Pn1)h1(Cn2) = h1(Pn1+n2) if and only if

n2 = n1 + 1;
(iv) All the roots of h1(Pn) and h1(Cm) are simple.

By Theorem 1.2.4, one can check the following results: h(C4) = h(D4),
h(P4) = h(K1 ∪ C3), h(P2)h(C6) = h(P3)h(D5), h(P2)h(C9) = h(P5)h(D6)
and h(P2)h(C15) = h(P5)h(D7)h(C5). So, by Corollary 3.2.1 and Lemma
4.3.1, it is easy to prove the following lemma.

Lemma 4.3.2. (i) β(Ck) = β(P2k−1) for k ≥ 4 and β(C3) = β(P4);
(ii) β(D4) = β(C4) = β(P7);
(iii) β(D5) = β(C6) = β(P11);
(iv) β(D6) = β(C9) = β(P17);
(v) β(D7) = β(C15) = β(P29).

By Theorem 1.2.5, β(Dn) = β(T1,2,n−3) and β(Cn) = β(T1,1,n−2), for n ≥
4. By Lemma 4.3.2, we have that, if H ∈ {K1}∪{Dn, T1,2,n−3|n = 4, 5, 6, 7}∪
{Cn, T1,1,n−2|n ≥ 4}, then there exists an integer k, k ≥ 4, such that β(H) =
β(P2k−1). By Theorem 3.2.2, β(Pn) < β(Pn−1), for n ≥ 2. So, we have

Corollary 4.3.1. Let H ∈ {K1} ∪ {Dn, T1,2,n−3|n = 4, 5, 6, 7} ∪ P ∪ C ∪ T1

and let β(H) = β(P2m). If m ≥ 1 and m 6= 2, then H ∼= P2m.

Lemma 4.3.3. Let G = t1P2∪t2P3∪ t3P5∪ t4C3. Then G is adjointly unique.

Proof. Let H be a graph such that h(H) = h(G) and H = ∪iHi. We prove
H ∼= G.
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By Corollary 3.3.1, we have

Hi ∈ {K1, P2, P3, P4, P5, C3, T1,1,1}.

Denote the number of K1, P2, P3, P4, P5, C3 and T1,1,1 in H by m0,m1,m2,

m3,m4, m5 and m6, respectively. By Lemmas 4.2.1 and 4.2.3, we have

R1(H) = R1(G) = m1 + m2 + m3 + m4 + m5 = t1 + t2 + t3 + t4.

Hence
m1 + m2 + m3 + m4 + m5 = t1 + t2 + t3 + t4.

Since h1(C3) is irreducible over the rational number field and h1(P4) = h1(C3),
we have m3 + m5 = t4 and m1 + m2 + m4 = t1 + t2 + t3, by Lemma 4.2.3 . As
p(G)− q(G) = t1 + t2 + t3, p(H)− q(H) = m0 +m1 +m2 +m3 +m4 +m6 and
p(G) − q(G) = p(H) − q(H), we have m0 + m3 + m6 = 0. This implies that
m0 = m3 = m6 = 0 and m5 = t4. Therefore,

Hi ∈ {P2, P3, P5, C3}.

By Corollary 3.2.1 and Lemma 4.3.2, we have

β(P5) < β(C3) < β(P3) < β(P2).

Comparing the minimum real roots of h(G) with those of h(H), we get H ∼= G.
¤

Theorem 4.3.1. Let n ≥ mi ≥ 2 and G = Kn − E(∪iPmi).
(i) If n > m, then G is χ–unique if and only if, for each i, either mi ≡

0(mod 2) and mi 6= 4 or mi = 3;
(ii) if n = m, then G is χ–unique if and only if, for each i, either mi ≡

0(mod 2) and mi 6= 4 or mi = 3, 5, where m = m1 + m2 + · · ·+ mk,

mi ≥ 2, i = 1, 2, · · · , k.

Proof. Note that Kn − E(∪iPmi) = lK1 ∪ (∪iPmi). By Theorem 1.1.1, we
have that Kn−E(∪iPmi) is χ-unique if and only if lK1 ∪ (∪iPmi) is adjointly
unique. So, we need only consider the necessary and sufficient condition for
F = lK1 ∪ (∪iPmi) to be adjointly unique, where l = n−m.
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We prove the sufficiency of the condition of the theorem. Let H be a graph
such that h(H) = h(F ) and H = ∪iHi. Now we prove that H ∼= F , that is
∪iHi

∼= lK1 ∪ (∪iPmi).
By Theorem 2.1.1, we have

t∏

i=1

h(Hi) = xl
k∏

i=1

h(Pmi). (4.1)

Comparing the minimum real roots on both sides of (4.1), by Theorem 3.3.2,
we get

Hi ∈ {K1, T1,2,i, Di+3|i = 1, 2, 3, 4} ∪ P ∪ C ∪ T1.

Without loss of generality, we assume m1 = max{mi|i = 1, 2, · · · , k}.
From the condition of the theorem, mi is even if mi ≥ 6. By Corollary 3.2.1
and (4.1), we know that β(F ) = β(Pm1) and there exists a component in H,
say H1, such that β(H1) = β(H) = β(Pm1). By Corollary 4.3.1, H1

∼= Pm1 ,
for m1 ≥ 6. Eliminating a common factor h(Pm1) of h(H) and h(F ), we have

t∏

i=2

h(Hi) = xl
k∏

i=2

h(Pmi).

Repeating elimination procedure for the above equality, we can obtain that,
for any mi ≥ 6 and mi is even, there exists a component Hi in H such that
Hi

∼= Pmi . Eliminating all the factors h(Pmi) for mi ≥ 6 on both sides of
equality (4.1), we obtain

t2∏

i=t1

h(Hi) = xl
k2∏

i=k1

h(Pmi), (4.2)

and mi ∈ {2, 3, 5}.
We distinguish two cases:

Case 1. n = m.
It is clear that l = 0 and mi ∈ {2, 3, 5}. By Lemma 4.3.3, we have H ∼= F .

Case 2. n > m.
In this case, we have mi ∈ {2, 3}. Hence, Hi ∈ {P2, P3}, by Corollary

3.3.1. By comparing the minimum real roots of the left-hand side with those
of the right-hand side in equality (4.2), we have H ∼= F .
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Conversely, note that h(P2n+1) = h(Pn ∪Cn+1) for n ≥ 3, h(P4) = h(C3 ∪
K1), and h(P5∪K1) = h(P2∪T1,1,1). This shows the necessity of the condition
of the theorem. ¤

Corollary 4.3.2. Let n ≥ m ≥ 2 and G = Kn − E(Pm).
(i) If n > m, then G is χ–unique if and only if m ≡ 0(mod 2) and m 6= 4, or

m = 3;
(ii) if n = m, then G is χ–unique if and only if m ≡ 0(mod 2) and m 6= 4, or

m = 3, 5.

This corollary gives a positive answer to Du’s Problem [32] and Liu’s Con-
jecture [58], which was also done in [29].

Let A,Ai, B,Bi,M,Mi be some multisets with positive integers as their
elements for i = 1, 2, see §1.2 in [70]. We denote by A\{b} the set obtained
by deleting an element b from A. For example, let A = {a, a, b, b, b, c}, then
A\{b} = {a, a, b, b, c}.

Lemma 4.3.4. Let G = m1P2 ∪ (∪i∈A1Pi) ∪ (∪j∈B1Cj) and H = m2P2 ∪
(∪i∈A2Pi)∪ (∪j∈B2Cj)∪ (∪k∈M1Dk). If h1(G) = h1(H), then m1 = m2 + |M1|,
where i ≥ 3, j ≥ 4, k ≥ 5.

Proof. Since h1(G) = h1(H), we know that R1(G) = R1(H) and q(G) =
q(H). By Lemmas 4.2.1 and 4.2.3, we have m1 + |A1| = m2 + |A2| and
p(G) = p(H). Let m1 + |A1| = m, p(G) = n and |M1| = s. Note that G has n

vertices, n −m edges, 2m vertices of degree 1 and NA(G) = N(K4) = 0. By
Lemma 4.2.4, we have

b3(G) = 1
6(n−m)

(
(n−m)2 + 3(n−m) + 4

)− n−m+2
2

(
n−2m∑
i=1

22 + 2m

)

+1
3

(
n−2m∑
i=1

23 + 2m

)
+

n−3m+m1∑
i=1

22 + 4(m−m1) + m1.

Note that H has n−m edges, n vertices, 2m+s vertices of degree 1, s vertices
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of degree 3, s triangles and N(K4) = 0. By Lemma 4.2.4, we have

b3(H) = 1
6(n−m)

(
(n−m)2 + 3(n−m) + 4

)
+ 1

3

(
n−2m−2s∑

i=1
23 + 2m + 28s

)

−n−m+2
2

(
n−2m−2s∑

i=1
22 + 2m + 10s

)
+

n−3m−4s+m2∑
i=1

22

+4(m−m2) + m2 + 13s + s(n−m + 2).

Since b3(G) = b3(H), by simplifying we have m1 = m2 + s = m2 + |M1|.
¤

Theorem 4.3.2. Let G = (∪i∈APi)∪ (∪j∈BP2j)∪ (∪k∈MCk)∪ lC3. Then G is
χ–unique if and only if 1 6∈ B and D = φ, or 1 ∈ B and (M ∩{6, 9, 15})∪D =
φ, where D = ({i|i ∈ A} ∩ {k − 1|k ∈ M}) ∪ ({2j|j ∈ B} ∩ {k − 1|k ∈ M}),
i = 3 or 5 if i ∈ A, k ≥ 5 if k ∈ M and 2 6∈ B.

Proof. By Theorem 1.1.1, it is not difficult to see that we need only prove that
the necessary and sufficient condition for G to be adjointly unique is 1 6∈ B

and D = φ, or 1 ∈ B and (M ∩ {6, 9, 15}) ∪D = φ.
Let H be a graph such that h(H) = h(G). We prove that H ∼= G by

induction on |A|+ |B|+ |M |+ l.
By Lemma 4.2.5 and Theorem 4.3.1, H ∼= G when |A|+ |B|+ |M |+ l = 1.
Suppose |A|+ |B|+ |M |+ l = m ≥ 2 and the theorem is true if |A|+ |B|+

|M |+ l < m. Let H = ∪iHi. By Theorem 3.3.2, we have

Hi ∈ {K1, T1,2,i, Di+3|i = 1, 2, 3, 4} ∪ P ∪ C ∪ T1. (4.3)

Let n = max{a|a ∈ A ∪ B′ ∪ M ′}, where B′ = {2j|j ∈ B} and M ′ =
{2k − 1|k ∈ M}. We distinguish two cases:

Case 1. n = 2t and t 6= 2.
By Corollary 3.2.1 and Lemma 4.3.1, there must exist a number t ∈ B

such that β(G) = β(P2t), and there exists a component Hi in H such that
β(P2t) = β(Hi). By Corollary 4.3.1, Hi

∼= P2t. Hence, H = P2t ∪ F . By the
induction hypothesis, we have

F ∼= [∪∈APi] ∪ [∪j∈B\{t}P2j ] ∪ [∪k∈MCk] ∪ lC3.

Therefore, H ∼= G.
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Case 2. n = 2t− 1.
If n = 3, 5, then M = φ, A = {3, 5}, l ≥ 0 and B = {1}. Hence, all

components of G are P2, P3, P5 or C3. By Lemma 4.3.3 , we have H ∼= G. If
n = 2t−1 ≥ 7, then by Theorem 1.2.5, Corollary 3.2.1, and Lemmas 4.3.1 and
4.3.2 , there exist a number t ∈ M such that β(G) = β(Ct) and a component
Hi in H such that β(H) = β(Hi) = β(Ct), where t ≥ 4 and Hi is one of the
following graphs

P2t−1, Ct, T1,1,t−2, D4, D5, D6, D7, T1,2,i−3, 5 ≤ i ≤ 7.

Case 2.1. Ct is a component in H such that β(Ct) = β(H).
Assume that H = Ct ∪ F . Then, by the induction hypothesis we have

F ∼= [∪i∈APi] ∪ [∪j∈BP2j ] ∪ [∪k∈M\{t}Ck] ∪ lC3.

Hence H ∼= G.

Case 2.2. H contains a component P2t−1 such that β(P2t−1) = β(H).
Without loss of generality, let H = P2t−1 ∪ F . By Lemma 4.3.1, we have

h(G, x) = h(H, x) = h(Ct, x)h(Pt−1, x)h(F, x).

Hence

h([∪i∈APi] ∪ [∪j∈BP2j ] ∪ [∪k∈M\{t}Ck] ∪ lC3) = h(Pt−1 ∪ F ).

By the induction hypothesis, we have

[∪i∈APi] ∪ [∪j∈BP2j ] ∪ [∪k∈M\{t}Ck] ∪ lC3
∼= Pt−1 ∪ F.

Hence t−1 ∈ A∪B′ and t ∈ M . This implies t−1 ∈ D, contradicting D = φ.

Case 2.3. There exists a component T1,1,t−2 in H such that β(T1,1,t−2) =
β(H), where t ≥ 4.

Assume that H = T1,1,t−2 ∪ F . By Theorem 1.2.5, we have

h(G, x) = h(H, x) = h(T1,1,t−2, x)h(F, x) = h(Ct, x)[xh(F, x)].

So,
h([∪i∈APi] ∪ [∪j∈BP2j ] ∪ [∪k∈M\{t}Ck] ∪ lC3) = h(K1 ∪H1).
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By the induction hypothesis,

[∪i∈APi] ∪ [∪j∈BP2j ] ∪ [∪k∈M\{t}Ck] ∪ lC3
∼= K1 ∪ F,

which is impossible.

Case 2.4. Di is a component of H and β(Di) = β(H) for some i, where
4 ≤ i ≤ 7.

If D4 is a component of H such that β(D4) = β(Ct), then t = 4. This
contradicts 4 /∈ M . If Di is a component of H and β(Di) = β(H) = β(Ct) for
some i, where 5 ≤ i ≤ 7, then t = 6, 9, 15, by Corollary 3.2.1 and Lemma 4.3.2.
Hence, according to the condition of the theorem, P2 is not a component of
G. Therefore we have the following claim by Theorems 1.2.5 and 4.3.4.

Claim: H must contain a component T1,1,1.

Proof of the Claim. Suppose that H does not contain a component T1,1,1.
Then, according to (4.3), we can assume that

H = m2P2 ∪ (∪aPa) ∪ (∪bCb) ∪ (∪cT1,1,c) ∪ (∪fDf ) ∪ (∪sT1,2,s) ∪ rK1,

where a ≥ 3, b ≥ 3, c ≥ 2, f = 4, 5, 6, 7 and s = 2, 3, 4.

Since h(D4) = h(C4) and h(C3) = h(P4), by Theorem 1.2.5, we have

h1(H) = h1(m2P2 ∪ (∪i∈A2Pi) ∪ (∪j∈B2Cj) ∪ (∪k∈M1Dk))

and
h1(G) = h1((∪i∈APi) ∪ (∪j∈B\{1}P2j) ∪ (∪k∈MCk) ∪ lC3),

where i ≥ 3 for i ∈ A2, j ≥ 4 for j ∈ B2, and |M1| ≥ 1 and k ≥ 5 for any
k ∈ M1.

Since h1(H) = h1(G), by Lemma 4.3.4 we have m2 + |M1| = 0, contradict-
ing |M1| > 0. This implies that T1,1,1 is a component of H if Di is a component
of H, where i = 5, 6, 7. This completes the proof of the claim.

Case 2.4.1. D7 is a component in H and β(D7) = β(H) = β(G). By Corol-
lary 3.2.1 and Lemma 4.3.2, C15 is a component of G and β(C15) = β(G),
and the order of a maximum path component (respectively a maximum cy-
cle component ) in H is less than 29 (respectively 15). Remembering that



The Chromaticity of Some Dense Graphs 75

h(P2)h(C15) = h(P5)h(D7)h(C5), by Lemma 3.2.5 we have

h1(C15) = h1(D7)(x + 3)(x + 2 + 2cos
π

5
)(x + 2 + 2cos

3π

5
),

and h(Pa) and h(Cb) do not include the factor (x+2+2cosπ
5 )(x+2+2cos3π

5 )
when a ≤ 28, b ≤ 14, unless a = 19 or a = 9, and b = 5. Hence, at least one
of P19, P9 and C5 is a component of H. Since h(P19) = h(P4)h(C5)h(C10),
h(P9) = h(P4)h(C5) and h(C15) = h(D7)h(T1,1,1)h(C5)/x, by the Claim we
have

h(H) = h(F )h(D7)h(T1,1,1)h(C5) = h(F ∪K1)h(C15).

Hence,

h([∪i∈APi] ∪ [∪j∈BP2j ] ∪ [∪k∈M\{15}Ck] ∪ lC3) = h(K1 ∪ F ).

By the induction hypothesis, we have

[∪i∈APi] ∪ [∪j∈BP2j ] ∪ [∪k∈M\{15}Ck] ∪ lC3
∼= K1 ∪ F,

which is impossible.

Case 2.4.2. D6 is a component of H and β(D6) = β(H).
By Corollary 3.2.1 and Lemma 4.3.2, β(D6) = β(C9) and C9 is a compo-

nent of G. Without loss of generality, we can assume that H = F ∪D6∪T1,1,1

by the Claim. As h(C9) = h(D6)h(T1,1,1)/x, we have

h(H) = h(F )h(D6)h(T1,1,1) = h(F ∪K1)h(C9).

Hence, we obtain

h([∪i∈APi] ∪ [∪j∈BP2j ] ∪ [∪k∈M\{9}Ck] ∪ lC3) = h(K1 ∪ F ).

By the induction hypothesis, we have

[∪i∈APi] ∪ [∪j∈BP2j ] ∪ [∪k∈M\{9}Ck] ∪ lC3
∼= K1 ∪ F,

which is impossible.

Case 2.4.3. D5 is a component of H and β(D5) = β(H).
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By Corollary 3.2.1 and Lemma 4.3.2, C6 is a component of G and β(C6) =
β(G), and the order of a maximum path component (respectively a maxi-
mum cycle component) in H is less than 11(respectively 6). Noticing that
h(P2)h(C6) = h(P3)h(D5), by Lemma 3.2.5, we have

h1(C6) = (x + 2)(x + 2 + 2cos
π

6
)(x + 2 + 2cos

5π

6
),

and h1(Pa) and h1(Cb) do not include the factor (x + 2) when a < 11, b < 6,
unless a = 3 or a = 7; and only h1(P5) includes the factor (x + 3). Hence, at
least one of P3 or P7 is a component of H and P5 must be a component of G.
Since h(P7) = h(P3)h(C4), by the Claim we have

h(H) = h(F )h(P3)h(T1,1,1)h(D5) = h(F )h(P2)h(C6)h(T1,1,1),

and
h(G) = h(G1)h(P5)h(C6).

Hence, we have

h([∪i∈APi] ∪ [∪j∈BP2j ] ∪ [∪k∈M\{6}Ck] ∪ lC3) = h(P2 ∪ T1,1,1 ∪ F ).

By the induction hypothesis, we get

[∪i∈APi] ∪ [∪j∈BP2j ] ∪ [∪k∈M\{6}Ck] ∪ lC3
∼= P2 ∪ T1,1,1 ∪ F,

which is impossible.

Case 2.5. T1,2,i, where 2 ≤ i ≤ 4, is a component of H.
Let H = T1,2,i ∪ F . We have

h(G, x) = h(H, x) = h(T1,2,i, x)h(F, x) = h(Di+3, x)[xh(F, x)],

which is impossible from Case 2.4.
Conversely, if j = i+1 and i ≥ 3, then h(Pi)h(Ci+1) = h(P2i+1) by Lemma

1.2.5. Note that h(P2)h(C6) = h(P3)h(D5), h(P2)h(C9) = h(P5)h(D6) and
h(P2)h(C15) = h(P5)h(D7)h(C5). This shows the necessity of the condition of
the theorem. ¤
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It is easy to see that if G is a graph with δ(G) ≥ p(G) − 3, then each
component of G is one of the graphs K1, Pi and Cj , where i ≥ 2 and j ≥ 3.
By Theorem 1.2.5, we have that K1 ∪K3 ∼h P4 and K1 ∪ Cn ∼h T1,1,n−2, for
n ≥ 4. Hence the following theorem follows from Theorems 4.3.1 and 4.3.2.

Theorem 4.3.3. Let A = {n|n ≡ 0(mod 2) and n ≥ 6} and B = {n|n ≥ 5}.
For a graph G with p vertices and δ(G) ≥ p − 3, we have that G is χ-unique
if and only if G is one of the following graphs:
(i) rK1 ∪ (

⋃
1≤i≤s

Pni) for r = 0 and ni ∈ A ∪ {2, 3, 5}, or r ≥ 1 and ni ∈ A∪
{2, 3}, where r, s ≥ 0;

(ii) t1P2∪ (
⋃

1≤i≤s
Pni)∪ (

⋃
1≤j≤t

Cmj )∪ lC3 for t1 = 0 and M = φ, or t1 ≥ 1 and

({6, 9, 15} ∩B) ∪M = φ, where t1, l, s, t ≥ 0, t + l ≥ 1, ni ∈ A ∪ {3, 5},
mj ∈ B and M = (A ∪ {3, 5}) ∩ {n− 1|n ∈ B}.

Lemma 4.3.5. For any m ≥ 6 and n ≥ 5, we have h(Um) = x3(x+4)h(Pm−4)
and h(U2n+1) = h(Un+2)h(Cn−1).

Proof. By Theorem 2.1.2, for m ≥ 6, we have

h(Um) = xh(T1,1,m−4) + x2h(T1,1,m−6)
= x2h(Pm−2) + 2x3h(Pm−4) + x4h(Pm−6)
= x3(x + 4)h(Pm−4).

By Lemma 1.2.5(i), if n ≥ 5 and m = 2n + 1, then
h(U2n+1) = x3(x + 4)h(Pn−2)h(Cn−1) = h(Un+2)h(Cn−1). ¤

From Theorem 4.3.1(i), we have

Lemma 4.3.6. Let ni = 3 or ni ≥ 6 and ni is even. If
m1∏

i=1

h1(Pni) =
m2∏

j=1

h1(Hj),

then m1 = m2 and ∪m1
i=1Pni

∼= ∪m2
j=1Hj , where Hj is connected and Hj 6∼= K1

for each j.

Theorem 4.3.4. Let ni ≥ 6. Then ∪m
i=1Uni is χ-unique if and only if ni = 7

or ni ≥ 10 and ni is even, where i = 1, 2, · · · , m.
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Proof. Let G = ∪m
i=1Uni . Suppose that h(H) = h(G) and let H = ∪m1

j=1Hj .
By Theorem 1.1.1, we only need prove H ∼= G. By Theorem 2.1.1, we have

m∏

i=1

h(Uni) =
m1∏

j=1

h(Hj). (4.4)

By Theorem 3.3.2, we have

Hj ∈ {T2,2,2, T1,3,3, K1,4, C4(P2), C3(P2, P2),K−
4 , D8,K1}∪

{T1,2,i|i = 2, 3, 4, 5} ∪ {Di|i = 4, 5, 6, 7} ∪ P ∪ C ∪ T1 ∪ U .

By calculation, we obtain the following:
h1(C3(P2, P2)) = h1(C4(P2)) = h1(K−

4 ) = h1(P2)h1(K1,4),
h1(D8) = h1(T1,2,5) = h1(P2)h1(P4)h1(K1,4),
h1(T1,3,3) = h1(P2)h1(P3)h1(K1,4),
h1(T2,2,2) = h2

1(P2)h1(K1,4).
Since h1(K1,4) = x + 4, eliminating all the factors x + 4 and x on both

sides of (4.4), we obtain, from Lemma 4.3.5, that
m∏

i=1

h1(Pni−4) =
m2∏

j=1

h1(H ′
j), m2 ≤ m1,

and
H ′

j ∈ {T1,2,i|i = 2, 3, 4} ∪ {Di|i = 4, 5, 6, 7} ∪ P ∪ C ∪ T1.

Note that ni − 4 = 3 or ni − 4 ≥ 6 and ni − 4 is even. By Lemma 4.3.6, we
have

∪m
i=1Pni−4

∼= ∪m2
j=1H

′
j . (4.5)

Hence Hj ∈ {K1,4}∪P∪U and H must have exactly m components H1,H2, · · · ,
Hm such that β(Hi) = −4 and m ≤ m1. For each component Hj , we have
q(Hj) − p(Hj) = −1, j = 1, 2, · · · ,m1. Hence q(H) − p(H) = −m1. Since
q(G)− p(G) = −m and q(H)− p(H) = q(G) − p(G), we have m = m1 = m2

and Hj ∈ U , j = 1, 2, · · · ,m. By (4.4) and (4.5), we have G ∼= H.
Note that h(U6) = h(K−

4 )h(2K1), h(U9) = h(K1)h(K1,3)h(K−
4 ) and h(U8) =

h(C3)h(K1,4). So, the necessity of the condition of the theorem follows from
Lemma 4.3.5 immediately. ¤

Corollary 4.3.3. Let n ≥ 6. Then Un is χ-unique if and only if n = 7 or
n ≥ 10 and n is even.
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4.4 A solution to two conjectures on adjointly equiv-

alent graphs

In this section, we obtain a necessary and sufficient condition for two graphs
H and G with β(G) = β(H) ≥ −4 to be adjointly equivalent. Moreover we
give a negative answer to Conjectures 4.4.1 and 4.4.2.

It is an interesting problem to determine [G] for a given graph G. From
Theorem 1.1.1, it is not difficult to see that the goal of determining [G] for
a given graph G can be realized by determining [G]h. In [29], Dong, Teo,
Little and Hendy determined all adjointly equivalent classes of graphs r0K1 ∪
r1K3 ∪

⋃
1≤i≤s

P2li for r0, r1 ≥ 0, li ≥ 1 and obtained a necessary and sufficient

condition for two graphs H and G in G1 to be adjointly equivalent, where

G1 =



aK3∪bD4∪

⋃

1≤i≤s

Pui∪
⋃

1≤j≤t

Cvj |a, b, r, t ≥ 0, ui ≥ 3, ui 6≡4(mod 5),vj ≥ 4



 .

Let

G2 =



aK3 ∪ bD4 ∪

⋃

1≤i≤s

Pui ∪
⋃

1≤j≤t

Cvj |a, b ≥ 0, ui ≥ 3, vj ≥ 4





and

G3 =



rK1 ∪

⋃

1≤j≤t

Cvj |r, t ≥ 0, v, ≥ 4



 .

In fact, it is not easy to determine the equivalence class of each graph in
Gi for i = 1, 2, 3. So, the authors in [29] proposed the following problem: For
a set G of graphs, determine

minhG =
⋃

G∈G
[G]h,

where minhG is called the adjoint closure of G.
Dong, Teo, Little and Hendy proposed the following problem and conjec-

tures.

Problem 4.4.1. ([29]) Determine minh(G2).
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Conjecture 4.4.1. ([29]) The following set equality holds.

minh(G2) ≡


rK1 ∪ aK3 ∪ bD4 ∪

⋃

1≤i≤m

T1,1,ri ∪
⋃

1≤i≤s

Pui

∪
⋃

1≤j≤t

Cvj |r, a, b, t, m, s ≥ 0, ri ≥ 2, ui ≥ 3, vj ≥ 4,m + r ≤ a



 .

Conjecture 4.4.2. ([29]) The following set equality holds.

minh(G3) ≡


rK1 ∪ bD4 ∪

⋃

1≤i≤m

T1,1,ri ∪
⋃

1≤j≤t

Cvj |r, b, m, t ≥ 0, ri ≥ 2, vj ≥ 4



 .

Let
F1 = {K1, T1,2,i, Di+3|i = 1, 2, 3, 4} ∪ P ∪ C ∪ T1

and

F2 = {T1,2,5, T2,2,2, T1,3,3,K1,4, C4(P2), C3(P2, P2),K−
4 , D8} ∪ U .

By Theorem 3.3.2, it is obvious that F1 is the set of all connected graphs
with β(G) > −4 and F2 is the set of all connected graphs with β(G) = −4.
Take Y1 = {⋃ Gi|Gi ∈ F1} and Y2 = {⋃ Gi|Gi ∈ F1 ∪ F2}. Clearly, both Y1

and Y2 are adjointly closed.

From Theorems 2.1.2, 1.2.4 and 1.2.5, one can check that each pair of the
graphs in R1 is adjointly equivalent. We call a pair of adjointly equivalent
graphs an adjointly equivalent transform. For example, P2n+1 ∼h Pn ∪ Cn+1

is an adjointly equivalent transform.
R1 = {P2n+1 ∼h Pn∪Cn+1, K1∪C3 ∼h P4, T1,1,m−2 ∼h K1∪Cm, T1,2,s−3 ∼h

K1 ∪ Ds, K1 ∪ P5 ∼h P2 ∪ T1,1,1, D6 ∪ T1,1,1 ∼h K1 ∪ C9, D7 ∪ T1,1,1 ∪ C5 ∼h

K1 ∪ C15, P3 ∪D5 ∼h P2 ∪ C6|n ≥ 3,m ≥ 4, s ≥ 4}.
Theorem 4.4.1. (i) There exists a graph G in minhG2 such that G contains

each graph in F1 as its component and minhG2 ⊆ Y1.
(ii) Let F3 = {K1}∪{T1,2,i, Di+3|i = 1, 3, 4}∪{Ci|i ≥ 4}∪T1 and Y3 = {⋃Gi|

Gi ∈ F3}. Then there exists a graph G in minhG3 such that G contains
each graph in F3 as its component and minhG3 ⊆ Y3.
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Proof. (i) Observing the minimum real roots of each graph in minhG2, by
Theorem 3.3.2 we have minhG2 ⊆ Y1.

On the other hand, since P4 ∼h K3 ∪ K1, P9 ∼h P4 ∪ C5 and P2n+1 ∼h

Pn ∪ Cn+1, for n ≥ 3, we have that K1 and K3 are components of some
graphs in minhG2. Note that K1 ∪ P5 ∼h P2 ∪ T1,1,1, P2 ∪ C6 ∼h P3 ∪ D5,
K1 ∪C9 ∼h D6 ∪ T1,1,1, K1 ∪C15 ∼h D7 ∪ T1,1,1 ∪C5, K1 ∪Cn ∼h T1,1,n−2, for
n ≥ 4, and K1 ∪Dm ∼h T1,2,m−3, for m ≥ 4. Hence (i) holds.

(ii) Let G ∈ G3 and H ∼h G. From Theorem 3.3.2, we have H ∈ Y1. From
Theorem 2.1.1 and Lemmas 4.2.1 and 4.2.3, we have R1(G) = R1(H) = 0, so
none of components of H is isomorphic to C3, or Pn, for n ≥ 2. Hence we
know that each component of H is one of the following graphs:

K1, Di, T1,1,r, Cj , T1,2,s,

where i = 4, 5, 6, 7; r ≥ 1; j ≥ 4 and s = 2, 3, 4.
Suppose that D5 or h(T1,2,2) is a component of H. Since (x + 1)|h(D5) =

h(T1,2,2)/x, we have that (x + 1)|h(H) and x + 1|h(G), which contradicts the
fact that h(P2) 6 |h(Cvj ) for all vj ≥ 4, by Lemma 4.3.1(ii). So, H ∈ Y3. Thus
minhG3 ⊆ Y3.

Since C4 ∼h D4, K1 ∪ C9 ∼h D6 ∪ T1,1,1, K1 ∪ C15 ∼h D7 ∪ T1,1,1 ∪ C5,
K1 ∪ Cn ∼h T1,1,n−2 and K1 ∪ Dn ∼h T1,2,n−3, we have that there exists a
graph G in minhG3 such that G contains the following all components:

K1, Di, T1,1,r, Cj , T1,2,s,

where i = 4, 6, 7; r ≥ 1; j ≥ 4 and s = 3, 4. ¤

It is not difficult to see that Theorem 4.4.1 gives negative answers to Con-
jectures 4.4.1 and 4.4.2.

Let G4 = {rK1 ∪
⋃

1≤i≤s
Pui |ui ≥ 2, r ≥ 1}. With a proof similar to that of

Theorem 4.4.1, we prove easily the following result.

Theorem 4.4.2. There exists a graph G in minhG4 such that G contains each
graph in F1 as its component and minhG4 ⊆ Y1.
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Lemma 4.4.1. Let Gi,Hj ∈ {K1, T1,1,1, P3, Cn, P2a|n ≥ 4, a ≥ 1}. If
⋃

1≤i≤m
Gi∼h

⋃
1≤j≤t

Hj, then
⋃

1≤i≤m
Gi
∼= ⋃

1≤j≤t
Hj.

Proof. By Theorem 2.1.1,

m∏

i=1

h(Gi) =
t∏

j=1

h(Hj) (4.6)

and Gi,Hj ∈ {K1, T1,1,1, P3, Cn, P2a|n ≥ 4, a ≥ 1}.
By induction on m we show that

⋃
1≤i≤m

Gi
∼= ⋃

1≤j≤t
Hj .

When m = 1, it is clear that

h(G1) =
t∏

j=1

h(Hj)

and G1,Hj ∈ {K1, T1,1,1, P3, Cn, P2a|n ≥ 4, a ≥ 1}. Thus there exists a com-
ponent in

⋃
1≤j≤t

Hj , say H1, such that β(G1) = β(H1). From Lemmas 4.3.1

and 4.3.2 and Corollary 3.2.1, by comparing β(G1) with β(H1), we know that
G1

∼= H1. Moreover, m = t = 1 and the theorem holds for m = 1.

Suppose that
⋃

1≤i≤m
Gi
∼= ⋃

1≤j≤t
Hj for m = k− 1 and k ≥ 2. When m = k,

from (4.6) it follows that

k∏

i=1

h(Gi) =
t∏

j=1

h(Hj) (4.7)

and

Gi,Hj ∈ {K1, T1,1,1, P3, Cn, P2a|n ≥ 4, a ≥ 1}

for 1 ≤ i ≤ k and 1 ≤ j ≤ t.

Now, we consider the minimum real roots on both sides of (4.7). Denote by
β(right) and β(left), respectively, the minimum real roots of the right-hand
side and of the left-hand side of (4.7). Without loss of generality, we assume
that β(left) = β(Gk). We distinguish the following cases:

Case 1. Gk
∼= Cn for some n ≥ 4.
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Clearly, H has a component, say Ht, such that β(Cn) = β(Ht). So, by
Lemmas 4.3.1 and 4.3.2, Ht

∼= Cn. From (4.7) we get

k−1∏

i=1

h(Gi) =
t−1∏

j=1

h(Hj) (4.8)

and Gi,Hj ∈ {K1, T1,1,1, P3, Cn, P2a|n ≥ 4, a ≥ 1} for 1 ≤ i ≤ k − 1 and
1 ≤ j ≤ t−1. By (4.8) and the induction hypothesis,

⋃
1≤i≤k−1

Gi
∼= ⋃

1≤j≤t−1
Hj ,

and so, G ∼= H.

Case 2. Gk ∈ {P4, P3, T1,1,1, P2,K1}.

Since β(P6) < β(T1,1,1) < β(P4) < β(P3) < β(P2) < β(K1) and β(C4) <

β(T1,1,1), by Lemma 4.3.2 one can see that Gi,Hj ∈ {K1, P2, P3, P4, T1,1,1} for
all 1 ≤ i ≤ k and 1 ≤ j ≤ t. Clearly, the theorem holds.

Case 3. Gk
∼= P2α for some α.

Obviously, α ≥ 3. Then, it is not difficult to see that H has a component,
say Ht, such that β(P2α) = β(Ht). So, by Lemmas 4.3.1 and 4.3.2, we have
Ht

∼= P2α. By the induction hypothesis,
⋃

1≤i≤k−1

Gi
∼= ⋃

1≤j≤t−1
Hj . So, G ∼= H.

¤

Suppose that G and H are two graphs. We construct a pair of graphs G∗

and H∗, respectively from G and H, by the following steps:
O1: We construct a pair of graphs G′ and H ′, respectively from G and H,

by replacing each component Y by an adjointly equivalent transform in R until
none of components is isomorphic to Y , where Y ∈ {P2n+1, D4, T1,1,m, T1,2,s

|n ≥ 3,m ≥ 2, s ≥ 2} and R ∈ {P2n+1 ∼h Pn ∪ Cn+1, D4 ∼h C4, T1,1,m ∼h

K1 ∪ Cm+2, T1,2,s ∼h K1 ∪Ds+3|n ≥ 3,m ≥ 2, s ≥ 2};
O2: We denote by a1, a2, a3, a4 and a5, respectively, the number of com-

ponents C3, P5, D5, D6 and D7 of G′. We denote by b1, b2, b3, b4 and b5,
respectively, the number of components C3, P5, D5, D6 and D7 of H ′. Let
x1 = max{a1 + a2, b1 + b2}, x2 = max{a3, b3}, x3 = max{a4 + a5, b4 + b5} and
x4 = max{a5, b5}. Then we take G′′ = G′ ∪x1K1 ∪x2P3 ∪x3T1,1,1 ∪x4C5 and
H ′′ = H ′ ∪ x1K1 ∪ x2P3 ∪ x3T1,1,1 ∪ x4C5.
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O3: We construct a pair of graphs G∗ and H∗, respectively from G′′ and
H ′′, by replacing each component Y ′ by an adjointly equivalent transform in
R′ until none of components is isomorphic to Y ′, where Y ′ ∈ {K1 ∪ C3,K1 ∪
P5, D6∪T1,1,1, D7∪T1,1,1∪C5, P3∪D5} and R′ ∈ {K1∪C3 ∼h P4,K1∪P5 ∼h

P2 ∪ T1,1,1, D6 ∪ T1,1,1 ∼h K1 ∪ C9, D7 ∪ T1,1,1 ∪ C5 ∼h K1 ∪ C15, P3 ∪D5 ∼h

P2 ∪ C6}.
Here we point out that the above operations are valid only for pairs of

graphs, but not for a single graph. For convenience, the pair of graphs G∗

and H∗ are said to be obtained from G and H by the operation OP1, denoted
simply by < G, H >−→OP1 < G∗,H∗ >.

Theorem 4.4.3. Let G, H ∈ Y1 and < G,H >−→OP1 < G∗,H∗ >. Then G ∼h H

if and only if G∗ ∼= H∗.

Proof. Suppose that G,H ∈ Y1 and G ∼h H. It is clear that G′ ∼h G ∼h

H ∼h H ′ and G∗ ∼h G′′ ∼h H ′′ ∼h H∗. So, by steps O2 and O3, one can see
that each component of G∗ and H∗ is one of the following graphs:

K1, T1,1,1, P3, Cn, P2i, n ≥ 4, i ≥ 1.

By Lemma 4.4.1, G∗ ∼= H∗.
Conversely, suppose that G∗ ∼= H∗. Then G′′ ∼h H ′′ and G′ ∼h H ′. Thus

G ∼h H. ¤

From Theorems 2.1.2 and 1.2.4 and Lemmas 3.2.7 and 4.3.5, it is not hard
to obtain the adjointly equivalent transforms in R2.

R2 = {K1∪Un ∼h Pn−4∪K1,4, 2K1∪T1,2,5 ∼h P2∪P4∪K1,4, 2K1∪T2,2,2 ∼h

2P2∪K1,4, 2K1∪T1,3,3 ∼h P2∪P3∪K1,4, 2K1∪C3(P2, P2) ∼h P2∪K1,4, 2K1∪
C4(P2) ∼h P2 ∪K1,4, 3K1 ∪K−

4 ∼h P2 ∪K1,4, 3K1 ∪D8 ∼h P2 ∪ P4 ∪K1,4}.
Suppose G, H ∈ Y2. Similar to OP1, Ĝ and Ĥ are said to be obtained

from G and H by the operation OP2, denoted by < G, H >−→OP2 < Ĝ, Ĥ >, if
the pair of graphs Ĝ and Ĥ can be obtained, respectively from G and H, by
the following steps:

O4: Let y0, y1, y2, y3, y4, y5, y6, y7, y8 be respectively the number of com-
ponents K1, Un, T1,2,5, T2,2,2, T1,3,3,C3(P2, P2), C4(P2), K−

4 , D8 of G, and let
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y′0, y
′
1, y

′
2, y

′
3,y

′
4, y′5, y′6, y′7, y′8 denote respectively the number of components

K1, Un,T1,2,5,T2,2,2, T1,3,3, C3(P2, P2), C4(P2), K−
4 , D8 of H. Suppose that

y = max{y1 + 2y2 + 2y3 + 2y4 + 2y5 + 2y6 + 3y7 + 3y8 − y0, y
′
1 + 2y′2 + 2y′3 +

2y′4 + 2y′5 + 2y′6 + 3y′7 + 3y′8 − y′0}. Take G0 = G ∪ yK1 and H0 = H ∪ yK1;

O5: We construct a pair of graphs G1 and H1, respectively from G0 and H0,
by replacing each component Y ′′ by an adjointly equivalent transform in R2

until none of the components is isomorphic to Y ′′, where Y ′′ ∈ {K1∪Un, 2K1∪
T1,2,5, 2K1∪T2,2,2, 2K1∪T1,3,3, 2K1∪C3(P2, P2), 2K1∪C4(P2), 3K1∪K−

4 , 3K1∪
D8|n ≥ 6}. In fact, G1 and H1 contain none of the following components: Un,
T1,2,5, T2,2,2, T1,3,3, C3(P2, P2), C4(P2), K−

4 and D8.

O6: Let s1 and s2 be respectively the number of components K1,4 of G1

and H1. Take s = min{s1, s2}. By deleting sK1,4 from G1 and H1, we obtain
graphs G2 and H2. Note that if G ∼h H, then s1 = s2 and G2,H2 ∈ Y1.

O7: By using OP1, we obtain the pair of graphs Ĝ and Ĥ, respectively
from G2 and H2; that is, < G2,H2 >−→OP1 < Ĝ, Ĥ >.

With a proof similar to that of Theorem 4.4.3, we get the following result.

Theorem 4.4.4. Let G,H ∈ Y2 and < G, H >−→OP2 < Ĝ, Ĥ >. Then G ∼h H

if and only if Ĝ ∼= Ĥ.

By Theorems 4.4.3 and 4.4.4, we have

Theorem 4.4.5. (i) For any graph G ∈ Y1, [G]h = {H ∈ Y1|H∗ ∼= G∗ and

< G, H >−→OP1 < G∗,H∗ >};
(ii) For any graph G∈Y2, [G]h ={H ∈ Y2|Ĥ∼=Ĝ and <G, H >−→OP2 <Ĝ, Ĥ >}.

4.5 The adjoint uniqueness of the union of T -shaped

trees

We call the tree Ta,b,c T -shaped trees. In this section, we study the chromatic
uniqueness of the complements of (∪iCni)∪(∪iDmj )∪(∪a,bT1,a,b) and of rK1∪⋃

a,b T1,a,b.
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Lemma 4.5.1. Let fi(x) be a polynomial in x with integral coefficients. If
h1(Pm) 6 |fi(x), for m ≥ 2 and for i = 1, 2, · · · , k, then there is no n, n ≥ 2,

such that h1(Pn)|
k∏

i=1
fi(x).

Proof. Suppose that there is a n, n ≥ 2, such that h1(Pn)|
k∏

i=1
fi(x). Clearly,

n + 1 ≥ 3. So, there is a n1 such that n + 1 = (n1 + 1)n2 and n1 + 1 = 4 or
n1 + 1 is prime. From Lemma 4.2.6, h1(P3) and h1(Pn1) are irreducible and

h1(P3)|h1(Pn) or h1(Pn1)|h1(Pn). Thus, h1(P3)|
k∏

i=1
fi(x) or h1(Pn1)|

k∏
i=1

fi(x),

which implies that there is a i such that h1(P3)|fi(x) or h1(Pn1)|fi(x). This
contradicts the condition of the lemma. ¤

Theorem 4.5.1. Let ni ≥ 5 and mj ≥ 9 for every integers i and j, and let
3 ≤ l1 ≤ 10 and l1 ≤ l2. Let G = (∪iCni) ∪ (∪jDmj ) ∪ (∪l1,l2T1,l1,l2). If
h(Pn) 6 |h(Cni), h(Pn) 6 |h(Dmj ) and h(Pn) 6 |h(T1,l1,l2), for all n ≥ 2, then G

is χ–unique if and only if l2 6= 2l1 + 5 and (l1, l2) 6= (ni − 1, ni), for all i.

Proof. From Theorem 1.1.1, we only need consider the necessary and suffi-
cient conditions for G to be adjointly unique.

Let H be a graph such that h(H) = h(G). Suppose that H = ∪iHi and
each Hi is connected. It is sufficient to prove that H ∼= G.

By Theorem 2.1.1 and Lemmas 4.2.1 and 4.2.3,
∏

i

h(Hi) =
∏

i

h(Cni)
∏

j

h(Dmj )
∏

l1,l2

h(T1,l1,l2) (4.9)

and
∑

i

R1(Hi) =
∑

i

R1(Cni) +
∑

j

R1(Dmj ) +
∑

l1,l2

R1(T1,l1,l2) = 0. (4.10)

By the conditions of the theorem and Lemma 4.5.1, h(Pn) 6 |h(G) = h(H),
for all n ≥ 2. Thus, h(Pn) 6 |h(Hi), for each i and for n ≥ 2. From (4.10),
Theorem 2.1.1 and Lemmas 4.2.1 and 4.2.3 and h1(P4) = h1(K3), we have
R1(Hi) = 0 for each component Hi in H. Recalling that h(Pn) 6 |h(Hi) for each
Hi and for n ≥ 2, by Lemmas 4.2.3 and 3.2.8, we have

Hi ∈ {Cn, Dm, Ta,b,c, K1|n ≥ 4,m ≥ 4, 1 ≤ a ≤ b ≤ c} (4.11)
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and
Hi 6∈ {T1,a,a, T1,b,b+3, T2,2,c, T2,3,3|a ≥ 2, b ≥ 1, c ≥ 2}. (4.12)

By Theorem 1.2.5, β(Cn) = β(T1,1,n−2) and β(Dn) = β(T1,2,n−3) for n ≥ 4.
Therefore, by Theorem 3.4.1, β(G) > −(2 +

√
5). So, β(H) = β(G) > −(2 +√

5). From Theorem 3.4.1 and (4.11) and (4.12), we have

Hi ∈ {Cn, Dm, T1,b,c, K1|n ≥ 4,m ≥ 4, 1 ≤ b ≤ c, b 6= c, c 6= b + 3}. (4.13)

Note that h(T1,a,2a+5) = h(T1,a+1,a+2)h(Ca+2), for a ≥ 2. We construct a
graph H ′ from H by replacing each component T1,a,2a+5 by two components
Ca+2 and T1,a+1,a+2 until none of components is isomorphic to T1,a,2a+5, where
a ≥ 2. Without loss of generality, let H ′ = ∪iH

′
i. From (4.9) and (4.13), we

can easily get that
∏

i=1

h(H ′
i) =

∏

i

h(Cni)
∏

j

h(Dmj )
∏

l1,l2

h(T1,l1,l2), (4.14)

H ′
i∈T1∪{K1}∪{Cm, Dm, T1,b,c|m ≥ 4, 2 ≤ b ≤ c, b 6= c, c 6= b + 3, c 6= 2b + 5}.

(4.15)
Now we consider the minimum real roots on both sides of (4.14), namely,
β(H ′) and β(G). Assume that T1,s1,s2 is a component of G with β(G) =
β(T1,s1,s2). Clearly, 3 ≤ s1 ≤ 10 and s2 ≥ s1. From (4.14), we see that H ′

must have a component, say H ′
1, such that β(H ′

1) = β(T1,s1,s2). As β(Cn) =
β(T1,1,n−2) and β(Dn) = β(T1,2,n−3) for n ≥ 4, we know, by Theorem 3.2.6
and (4.15), that H ′

1 ∈ {T1,s1,s2 , T1,a,a+1|a ≥ 3}. Suppose that H ′
1
∼= T1,a,a+1

and T1,a,a+1 6∼= T1,s1,s2 . From Theorem 3.2.6(iii) and β(T1,a,a+1) = β(T1,s1,s2),
we have T1,a−1,2a+3

∼= T1,s1,s2 , which contradicts the fact that s2 6= 2s1 + 5.
Thus, H ′

1
∼= T1,s1,s2 . Eliminating a factor h(T1,s1,s2) from both sides of (4.14),

we arrive at
∏

i=2

h(H ′
i) =

∏

i

h(Cni)
∏

j

h(Dmj )
∏

l1,l2

h(T1,l1,l2)/h(T1,s1,s2). (4.16)

From (4.16), we can obtain the following fact by repeating the above argument.

Fact 1. For each component T1,l1,l2 of G, there must be a component H ′
i of

H ′ such that H ′
i
∼= T1,l1,l2 .
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Eliminating the factor
∏

l1,l2
h(T1,l1,l2) of h(G) from both sides of (4.14),

it follows immediately that
∏

i=1

h(H ′′
i ) =

∏

i

h(Cni)
∏

j

h(Dmj ) (4.17)

and

H ′′
i ∈T1∪{K1}∪{Cm, Dm, T1,b,c|m ≥ 4, 2 ≤ b ≤ c, b 6= c, c 6= b + 3, c 6= 2b + 5}.

(4.18)
Since p((∪iCni) ∪ (∪jDmj )) = q((∪iCni) ∪ (∪jDmj )), we have p(∪iH

′′
i ) =

q(∪iH
′′
i ). So, from (4.18), we have

H ′′
i ∈ {Cn, Dm|n ≥ 4,m ≥ 4}. (4.19)

From the condition of the theorem and Lemma 3.2.6, we have β(Dmj ) < −4 <

β(Cn), for mj ≥ 9 and n ≥ 4. From Corollary 3.2.1, we can get the following
fact by comparing the minimum real roots on both sides of equation (4.17) .

Fact 2. For each component Dmj of G, there must be a component H ′
i such

that H ′
i
∼= Dmj in H ′.

Eliminating the factor
∏

j h(Dmj ) of h(G) from both sides of (4.17), it
follows that

∏

i

h(H ′′′
i ) =

∏

i

h(Cni), H ′′′
i ∈ {Cn, Dm|n ≥ 4,m ≥ 4}. (4.20)

The following fact is obtained from (4.18), the condition of the theorem
and Lemma 4.2.5.

Fact 3. ∪iH
′′′
i
∼= ∪iCni .

From Facts 1, 2 and 3, it is clear that H ′ ∼= G. Suppose that H has
at least one component T1,a,2a+5. Obviously, H ′ must contain components
T1,a+1,a+2 and Ca+2. Recalling that H ′ ∼= G, we have that G must contain
the components T1,a+1,a+2 and Ca+2. This contradicts the condition of the
theorem. So, H does not contain the component T1,a,2a+5. Therefore, H ∼=
H ′ ∼= G. This completes the proof of the sufficiency of the theorem.

From Lemma 3.2.8(iii), the necessity of the condition is obvious. ¤

From Theorems 4.4.1, 2.2.4 and 2.2.5, we have
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Corollary 4.5.1. Let Gi ∈ {Ci|i ≥ 5, i 6≡ 2(mod 4)} ∪ {Dj |j ≥ 9, j 6≡
2(mod 3), j 6≡ 3(mod 5)} ∪ {T1,l1,l2 |3 ≤ l1 ≤ 6, l1 ≤ l2, l1 6= l2, l1 6= l2 + 1, l2 6=
2l1 +5} and (l1, l2) 6∈ {(3, 3k), (3, 4k−1), (4, 4k+1), (4, 5k−1), (4, 7k), (5, 3k+
2), (5, 4k+4), (5, 5k+2), (6, 3k+3), (6, 7k−1)|k ≥ 1}. Then ∪iGi is χ–unique.

Theorem 4.5.2. Let 3 ≤ l1 ≤ 10 and l1 ≤ l2. If h(Pm) 6 |h(T1,l1,l2) for any
m ≥ 2, then Kn−E(∪l1,l2T1,l1,l2) is χ–unique if and only if l2 6= 2l1 +5, where
n ≥ ∑

l1,l2

|V (T1,l1,l2)|.

Proof. Obviously, Kn −E(∪l1,l2T1,l1,l2) = rK1 ∪ (∪l1,l2T1,l1,l2), where r =
n− ∑

l1,l2

|V (T1,l1,l2)|. Let G = rK1 ∪ (∪l1,l2T1,l1,l2). Because of Theorem 1.1.1,

we only consider the necessary and sufficient conditions for G to be adjointly
unique.

Let H be a graph such that h(H) = h(G). Suppose that H = ∪iHi, where
each Hi is connected. By Theorem 2.1.1 and Lemmas 4.2.1 and 4.2.3, we have

∏

i

h(Hi) = xr
∏

l1,l2

h(T1,l1,l2) (4.21)

and ∑

i

R1(Hi) =
∑

l1,l2

R1(T1,l1,l2) = 0. (4.22)

With an argument similar to that of Theorem 4.5.1, by the condition of the
theorem, Theorem 3.4.1 and Lemma 4.5.1, we have

Hi ∈ {Cn, Dm, T1,b,c, K1|n ≥ 4,m ≥ 4, 1 ≤ b ≤ c, b 6= c, c 6= b + 3}. (4.23)

We construct a graph H ′ from H by replacing each component T1,a,2a+5 by
two components Ca+2 and T1,a+1,a+2 until none of components is isomorphic
to T1,a,2a+5, where a ≥ 2. Without loss of generality, let H ′ = ∪iH

′
i. By (4.21)

and (4.23), we obtain that
∏

h(H ′
i) = xr

∏

l1,l2

h(T1,l1,l2) (4.24)

and

H ′
i∈T1∪{K1}∪{Cm, Dm, T1,b,c|m ≥ 4, 2 ≤ b ≤ c, b 6= c, c 6= b + 3, c 6= 2b + 5}.

(4.25)
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Similar to the proof of Theorem 4.5.1, by comparing the minimum real roots
on both sides of (4.24), we have

Fact 4. For each component T1,l1,l2 of G, there must be a component H ′
i of

H ′ such that H ′
i
∼= T1,l1,l2 .

Eliminating the factor
∏

l1,l2
h(T1,l1,l2) of h(G) from both sides of (4.24),

it follows immediately that
∏

h(H ′′
i ) = xr. (4.26)

From Fact 4 and (4.26), we have H ′ ∼= G. Assume that H has at least one
component T1,a,2a+5. Then H ′ must contain a component Ca+2 and Ca+2 is
a component of G, contradicting (4.26). So, H ∼= H ′ ∼= G. The proof of the
sufficiency of the condition is complete.

From (iii) of Lemma 3.2.8, the necessity of the condition is obvious. ¤

Corollary 4.5.2. Let Gi ∈ {T1,l1,l2 |3 ≤ l1 ≤ 6, l1 ≤ l2, l1 6= l2, l1 6= l2 + 1, l2 6=
2l1 +5} and (l1, l2) 6∈ {(3, 3k), (3, 4k−1), (4, 4k+1), (4, 5k−1), (4, 7k), (5, 3k+
2), (5, 4k + 4), (5, 5k + 2), (6, 3k + 3), (6, 7k − 1)|k ≥ 1}. Then Kn − E(∪iGi)
is χ–unique, where n ≥ ∑

l1,l2

|V (T1,l1,l2)|.

4.6 An invariant R2(G) for adjointly equivalent graphs

and its application

In this section, we first give some new properties of the invariant R2(G).
Then we find all adjointly equivalent graphs of two classes of graphs with
R1(G) = −1.

In [27], Dong, Teo, Little and Hendy introduced an invariant for adjointly
equivalent graphs as follows.

Definition 4.6.1. ([27]) Let G be a graph. Then an invariant R2(G) of G is
defined by

R2(G) = b3(G)−
(

b1(G)
3

)
− (b1(G)− 2)

(
b2(G)−

(
b1(G)

2

))
− b1(G).

It is clear that for any two graphs G and H, if h(G) = h(H), then R2(G) =
R2(H). The following lemmas can be found in [27].
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Lemma 4.6.1. ([27]) Let G be a graph with k components G1, G2, · · · , Gk.
Then

R2(G) =
k∑

i=1

R2(Gi).

Lemma 4.6.2. ([27])
(i) R2(P1) = 0, R2(P2) = −1 and R2(Pn) = −2, for n ≥ 3;
(ii) R2(K3) = −2 and R2(Cn) = 0, for n ≥ 4;
(iii) R2(T1,1,1) = −1 and R2(T1,1,n) = 0, for n ≥ 2;
(iv) R2(D4) = 0 and R2(Dn) = 1, for n ≥ 5;
(v) R2(F6) = 5 and R2(Fn) = 4, for n ≥ 7;
(vi) R2(K−

4 ) = 3.

Lemma 4.6.3. ([80]) Let G be a connected graph with R1(G) = −1 and
q(G) ≥ p(G). Then b3(G) ≥ b3(Aq(G)) + k, k ≥ 0 and
(i) k = 0 if and only if G ∈ {Aq(G)|q(G) ≥ 5} ∪ {Bq(G), C3(P2, P2),K−

4 |q(G)
≥ 7},

(ii) b3(B6) = b3(A6) + 1 and b3(B7) = b3(A7) = b3(F6)− 2,
(iii) b3(Bn) = b3(An) = b3(Fn−1)− 1, for n ≥ 8.

Theorem 4.6.1. Let G be a connected graph with R1(G) = −1 and q(G) ≥
p(G). Then R2(G) ≥ 3 and the equality holds if and only if G ∈ {Aq(G)|q(G) ≥
5} ∪ {Bq(G), C3(P2, P2),K−

4 |q(G) ≥ 7}. In particular, we have that R2(An) =
3, for n ≥ 5, R2(B6) = 4, and R2(Bn) = 3, for n ≥ 7.

Proof. Suppose that G is a connected graph with R1(G) = −1 and q(G) ≥
p(G) + 1. By Lemma 4.2.3 (iii), we have that G ∈ {K−

4 , Fn|n ≥ 6}. From
Lemma 4.6.2, R2(Fn) > 3, for n ≥ 6, and R2(K−

4 ) = 3.
Suppose that G is a connected graph with R1(G) = −1 and q(G) = p(G).

From Definitions of R1(G) and R2(G), it follows by calculation that

R2(G) = b3(G)−
(

b1(G)
3

)
− (b1(G)− 2)[(R1(G)− b1(G)]− b1(G).

Since b1(G) = q(G) = q(Fq(G)−1), we have

R2(G) = R2(Fq(G)−1) + b3(G)− b3(Fq(G)−1).
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By Lemmas 4.6.2 and 4.6.3, we have that the theorem holds when q(G) ≥ 7.
If q(G) = 5 or q(G) = 6, then G ∈ {A5, A6, B6}. It is easy to verify that
R2(B6) = 4 and R2(A5) = R2(A6) = 3. ¤

From Lemma 4.2.4 and Definition 4.6.1, we have

Theorem 4.6.2. Let G be a graph with p vertices and q edges. If the degree
sequence of G is (d1, d2, d3, · · · , dp), then

R2(G) =
4q

3
−2

p∑

i=1

d2
i +

1
3

p∑

i=1

d3
i +

∑

ij∈E(G)

didj−
∑

i∈M

M(i)di+4NA(G)+N(K4).

From Theorem 4.6.2, the following lemma follows.

Lemma 4.6.4. R2(T1,l2,l3) = 1, for all 2 ≤ l2 ≤ l3, and R2(Tl1,l2,l3) = 2, for
all 2 ≤ l1 ≤ l2 ≤ l3.

Theorem 4.6.3. Let G = An∪(∪k
i=1Cmi), where mi 6≡ 2(mod 4) and mi ≥ 5,

for all i, and n 6≡ 2(mod 3) and n ≥ 5. Then [G]h = {G} except for [G]h =
{A7 ∪ (∪k

i=1Cmi), B7 ∪ (∪k
i=1Cmi)}, for n = 7; in particular, G is χ-unique if

and only if n 6= 7.

Proof. Let H be a graph such that h(H) = h(G) and assume that H =
∪s

i=1Hi. From Lemmas 4.2.1 and 4.2.3, we have

R1(H) = R1(G) =
s∑

i=1

R1(Hi) = R1(An) +
k∑

i=1

R1(Cmi) = −1. (4.27)

By the condition of the theorem and Theorem 2.2.5, it is not hard to see that
h(Pm) 6 |h(Cmi) and h(Pm) 6 |h(An), for all m ≥ 2. By Lemma 4.5.1, we have
that h(Pm) 6 |h(H), for all m ≥ 2. As h1(C3) = h1(P4), we know that H does
not contain any Pm or C3 as its component. So, from (4.27) and Lemmas 4.2.1
and 4.2.3, we have that there exists exactly one component in H, say H1, such
that R1(H1) = −1 and R1(Hi) = 0, for all i ≥ 2. Without loss of generality,
from Lemma 4.2.3, we can assume that

H = rK1 ∪H1 ∪ (
⋃

i

Cni) ∪ fD4 ∪ (
⋃

j∈S

Duj ) ∪ lT1,1,1 ∪ (
⋃

T∈T
T ), (4.28)
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where H1 is connected and R1(H1) = −1, uj ≥ 5, for all j ∈ S, ni ≥ 4, for all
i and T = {Tl1,l2,l3 |1 ≤ l1 ≤ l2 ≤ l3 and (l1, l2, l3) 6= (1, 1, 1)}.

Let q(H1) = p(H1) + t. By Lemma 4.2.3, it is clear that t ≤ 1 and t = 1
if and only if H1 ∈ {Fv, K

−
4 }. Since h(P2)|h(K−

4 ), we must have H1
∼= Fv, for

t = 1. From (4.28), it follows that

q(H) = p(H1) + t +
∑
i

p(Cni) + fp(D4) +
∑
j∈S

p(Duj )+

lp(T1,1,1)− l +
∑

T∈T
p(T )− |T |

= p(H)− r + t− l − |T |.

(4.29)

Recalling that p(G) = q(G), we have p(H) = q(H). Thus, from (4.29),

r + l + |T | = t. (4.30)

From the fact that t ≤ 1 and t = 1 if and only if H1
∼= Fv and v ≥ 6, it suffices

to consider the following cases.

Case 1. t = 1. So, from (4.30), l ≤ 1. Obviously, H1
∼= Fv, where v ≥ 6.

From h(H) = h(G), we have R2(G) = R2(H). From Lemmas 4.6.1, 4.6.2
and 4.6.4 and Theorem 4.6.1, we have that R2(H) ≥ R2(Fv) + |S| − l and
R2(G) = 3. Thus, R2(H) = 3 if and only if l = 1, |S| = 0 and H1

∼= Fv, where
v ≥ 7. From (4.30), r = |T | = 0. From (4.28), it follows immediately that

H = Fv ∪ (
⋃

i

Cni) ∪ fD4 ∪ T1,1,1. (4.31)

Since h(G) = h(H) and h(C4) = h(D4), from Theorem 2.1.1, the condition of
theorem and (4.31), we have

h(An)
k∏

i=1

h(Cmi) = h(Fv)h(T1,1,1)[h(C4)]f
∏

i

h(Cni). (4.32)

From (i) and (ii) of Theorem 3.2.5 and Lemma 3.2.6, we know that β(G) =
β(An) and β(H) = β(Fv). From Lemma 3.2.7, it is clear that h(P4)|h(F17),
h(P2)|h(F11), h(P4)|h(F7) and h(P2)|h(F8). Recalling that h(Pm) 6 |h(H), for
all m ≥ 2, we have that v 6= 7, 8, 11 and 17. Thus, by the condition of the
theorem and (v) of Theorem 3.2.5, we have that n 6= 5, 6, 7, 8.
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Suppose that n = 9. Clearly v = 9. From (v) of Lemma 3.2.7 and (4.32),
it follows that

h(B6)h(T1,1,1)
k∏

i=1

h(Cmi) = h(B6)h(C4)h(T1,1,1)[h(C4)]f
∏

i

h(Cni).

So,
k∏

i=1

h(Cmi) = h(C4)[h(C4)]f
∏

i

h(Cni).

By Lemma 4.2.5, ∪k
i=1Cmi

∼= C4 ∪i Cni ∪ fC4, which contradicts mi ≥ 5 for
all i.

Suppose that n ≥ 10. Obviously, v ≥ 10. Again by Theorem 3.2.5, it is
not hard to see that, for n ≥ 10 and v ≥ 10, β(An) < β(Fv). This contradicts
h(G) = h(H).

Case 2. t = 0. From (4.30), r = l = |T | = 0. So, from (4.28),

H = H1 ∪ (
⋃

i

Cni) ∪ fD4 ∪ (
⋃

j∈S

Duj ), (4.33)

where H1 is connected and R1(H1) = −1, uj ≥ 5, for all j ∈ S, and ni ≥ 4,
for all i.

Since R2(G) = R2(H), from Lemmas 4.6.1, 4.6.2 and 4.6.4 and Theorem
4.6.1 we have that R2(H) ≥ R2(H1)+ |S| and R2(G) = 3. Thus, R2(H) = 3 if
and only if |S| = 0 and H1 ∈ {Av|v ≥ 5} ∪ {Bv, C3(P2, P2),K−

4 |v ≥ 7}. Note
that, for all m ≥ 2, h(Pm) 6 |h(H1), whereas h(P2)|h(C3(P2, P2)), h(P2)|h(K−

4 )
and h(P2)|h(A5). So, H1 ∈ {Av|v ≥ 6} ∪ {Bv|v ≥ 7}. From (4.33), it follows
immediately that

H = H1 ∪ (
⋃

i

Cni) ∪ fD4. (4.34)

Since h(C4) = h(D4), it follows, from (4.34), that

h(An)
k∏

i=1

h(Cmi) = h(H1)[h(C4)]f
∏

i

h(Cni). (4.35)

Suppose that H1
∼= Bv and v ≥ 7. From Theorem 3.2.5, Lemma 3.2.6

and (4.35), we have β(G) = β(An) and β(H) = β(Bv). So, β(Bv) = β(An).
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Hence, from Theorem 3.2.5, we have that β(Bv) = β(An) if and only if v = 10
and n = 6, or v = 7 and n = 7.

If n = 6, then v = 10. Since h(B10) = h(C4)h(A6), it follows from (4.35)
that

k∏

i=1

h(Cmi) = h(C4)[h(C4)]f
∏

i

h(Cni).

From Lemma 4.2.5, we have that ∪k
i=1Cmi

∼= C4 ∪i Cni ∪ fC4. This again
contradicts mi ≥ 5 for all i.

If n = 7, then v = 7. By Lemma 3.2.7, A7 ∼h B7. Thus, we have that
f = 0 and [A7 ∪ (∪k

i=1Cmi)]h = {A7 ∪ (∪k
i=1Cmi), B7 ∪ (∪k

i=1Cmi)}.
From the above arguments, we must have H1

∼= Av if v ≥ 8. Comparing the
minimum real roots on both sides of (4.35), from Lemma 3.2.6 and Theorem
3.2.5, we have H1

∼= An. Thus, it follows from (4.35) that

k∏

i=1

h(Cmi) = [h(C4)]f
∏

i

h(Cni). (4.36)

By Lemma 4.2.5 and (4.36), f = 0 and H ∼= G for n 6= 7 and n 6≡ 2(mod 3).
This completes the proof of the theorem. ¤

Corollary 4.6.1. For n ≥ 5 and n 6≡ 2(mod 3), An is χ-unique if and only if
n 6= 7.

Theorem 4.6.4. Let G = Bn∪aC9∪bC15∪(∪k
i=1Cmi), where mi 6≡ 2(mod 4),

and mi ≥ 5 and mi 6= 9, 15, for all i, and n ≥ 7. Then [G]h = {G} except for
the following cases:
(i) [G]h = {G,A7 ∪ aC9 ∪ bC15 ∪ (∪k

i=1Cmi)}, for n = 7;
(ii) [G]h = {G,F13 ∪ T1,1,1 ∪ (a− 1)C9 ∪ bC15 ∪ (∪k

i=1Cmi)}, for n = 8 and
a ≥ 1;

(iii) [G]h = {G,F15 ∪ T1,1,1 ∪ C5 ∪ aC9 ∪ (b− 1)C15 ∪ (∪k
i=1Cmi)}, for n = 9

and b ≥ 1;
(iv) [G]h = {G,A6 ∪ C4 ∪ aC9 ∪ bC15 ∪ (∪k

i=1Cmi), A6 ∪D4 ∪ aC9 ∪ bC15∪
(∪k

i=1Cmi)}, for n = 10.
In particular, G is χ-unique if and only if n 6= 7, 10, and a = 0 when n = 8,
and b = 0 when n = 9.
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Proof. Let H be a graph such that h(H) = h(G), and assume that H =
∪s

i=1Hi. From Lemmas 4.2.1 and 4.2.3, we have

R1(H) =
s∑

i=1

R1(Hi) = R1(Bn) + aR1(C9) + bR1(C15) +
k∑

i=1

R1(Cmi) = −1.

(4.37)
With the same argument as Theorem 4.6.3, we can assume, from (4.37)

and Lemmas 4.2.1 and 4.2.3, that

H = rK1 ∪H1 ∪ (
⋃

i

Cni) ∪ fD4 ∪ (
⋃

j∈S

Duj ) ∪ lT1,1,1 ∪ (
⋃

T∈T
T ), (4.38)

where H1 is connected and R1(H1) = −1, uj ≥ 5, for all j ∈ S, ni ≥ 4, for all
i, and T = {Tl1,l2,l3 |1 ≤ l1 ≤ l2 ≤ l3 and (l1, l2, l3) 6= (1, 1, 1)}.

Let q(H1) = p(H1) + t. With an argument similar to that of Theorem
4.6.3, we can obtain that

t ≤ 1 and t = 1 if and only if H1
∼= Fv, v ≥ 6, (4.39)

and
r + l + |T | = t. (4.40)

So, we consider the following cases.

Case 1. t = 1. So, l ≤ 1. Obviously, H1
∼= Fv and v ≥ 6.

From h(H) = h(G), we have R2(G) = R2(H). Using an argument similar
to that of Case 1 of Theorem 4.6.3, from Lemmas 3.6.1, 3.6.2 and 3.6.4 and
Theorem 3.2.5 we can show that l = 1, |S| = r = |T | = 0 and H1

∼= Fv, where
v ≥ 7. So, it follows immediately, from (4.38) and h(D4) = h(C4), that

H = Fv ∪ (
⋃

i

Cni) ∪ fD4 ∪ T1,1,1 (4.41)

and

h(Bn)[h(C9)]a[h(C15)]b
k∏

i=1

h(Cmi) = h(Fv)h(T1,1,1)[h(C4)]f
∏

i

h(Cni).

(4.42)
From Theorem 3.2.5 and Lemma 3.2.6, we know that β(G) = β(Bn) and
β(H) = β(Fv). From β(G) = β(H), again by Theorem 3.2.5, it is not hard to
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see that there exists a positive integer j such that v = 2j + 1 and n = j + 2,
where j ≥ 5. Thus, from (4.42), we have that

h(Bj+2)[h(C9)]a[h(C15)]b
k∏

i=1

h(Cmi) = h(F2j+1)h(T1,1,1)[h(C4)]f
∏

i

h(Cni).

(4.43)
Since h(F2j+1)h(K1) = h(Dj)h(Bj+2) for j ≥ 4, it follows from (4.43) that

h(K1)[h(C9)]a[h(C15)]b
k∏

i=1

h(Cmi) = h(Dj)h(T1,1,1)[h(C4)]f
∏

i

h(Cni).

(4.44)
Now we consider the minimum real roots of both sides of equation (4.44).

We denote respectively by β(right) and β(left) the minimum real roots of the
right-hand side and of the left-hand side of equation (4.44).

Suppose that there are i and j such that β(right) = β(Cmi) and β(left) =
β(Cnj ). By Corollary 3.2.1, Cmi

∼= Cnj . After eliminating a factor h(Cmi)(=
h(Cnj )) from both sides of equality (4.44), we repeat the elimination procedure
and must obtain that there are i′ and j′ such that β(right) = β(Cmi′ ) and
β(left) = β(Dj′). Clearly, β(Cmi′ ) = β(Dj′). By Corollary 3.2.1 and Lemma
4.3.2, we have that mi′ = 9 and j′ = 6, or mi′ = 15 and j′ = 7, or mi′ = 6
and j′ = 5. From the condition of the theorem, mj 6= 6, for all i. Note that
h(B9)h(C15) = h(F15)h(T1,1,1)h(C5) and h(B8)h(C9) = h(F13)h(T1,1,1). So, it
is not hard to see that (4.43) holds if and only if a ≥ 1 and j = 6, or b ≥ 1
and j = 7. By (4.42), we have that

[h(C9)]a−1[h(C15)]b
k∏

i=1

h(Cmi) = [h(C4)]f
∏

i

h(Cni)

or

h(C5)[h(C9)]a[h(C15)]b−1
k∏

i=1

h(Cmi) = [h(C4)]f
∏

i

h(Cni).

By Lemma 4.2.5, we know that, if t = 1, then f = 0. Thus, H ∈ {B8 ∪ aC9 ∪
bC15 ∪ (∪k

i=1Cmi), F13 ∪ T1,1,1 ∪ (a− 1)C9 ∪ bC15 ∪ (∪k
i=1Cmi)}, for n = 8, and

H ∈ {B9∪aC9∪bC15∪(∪k
i=1Cmi), F15∪T1,1,1∪C5∪aC9∪(b−1)C15∪(∪k

i=1Cmi)},
for n = 9. This proves (ii) and (iii).
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Case 2. t = 0. So, r = l = |T | = 0.

With a proof similar to that of Case 2 of Theorem 4.6.3, we can obtain
that

h(Bn)
k∏

i=1

h(Cmi) = h(H1)[h(C4)]f
∏

i

h(Cni) (4.45)

and H1 ∈ {Av|v ≥ 6} ∪ {Bv|v ≥ 7}.
From Theorem 3.2.5 and Lemma 3.2.6, β(G) = β(Bn) and β(H) = β(Av).

Again by Theorem 3.2.5, it is not difficult to see that β(Bn) = β(Av) if and
only if n = 7 and v = 7, or n = 10 and v = 6.

Suppose that n = 7 and v = 7. By Lemma 3.2.7, B7 ∼h A7. By Lemma
4.2.5 and (4.45), we have that f = 0 and (i) of the theorem holds.

Suppose that n = 10 and v = 6. By Lemma 3.2.7, B10 ∼h A6 ∪ C4 and
B10 ∼h A6 ∪D4. By (4.45), we have

h(C4)
k∏

i=1

h(Cmi) = [h(C4)]f
∏

i

h(Cni).

Comparing the minimum real roots of both sides of the above equation, by
D4 ∼h C4 we know that (iv) of the theorem is true.

Since n 6= 5, 6, we have that n ≥ 8 and v ≥ 8. Comparing the minimum
real roots of both sides of (4.45), from Lemma 3.2.6 and Theorem 3.2.5 we
have H1

∼= Bn. Thus, it follows from (4.45) that

k∏

i=1

h(Cmi) = [h(C4)]f
∏

i

h(Cni). (4.46)

By Lemma 4.2.5 and (4.46), we have that f = 0 and H ∼= G. ¤

By Lemma 3.2.7 (vi) and Theorem 4.6.4, we have

Corollary 4.6.2. For all n ≥ 6, Bn is χ-unique if and only if n 6= 6, 7 and
10.
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4.7 A new invariant R3(G) for adjointly equivalent

graphs and its application

We introduce a new invariant R3(G) in this section and give some useful
properties. By using these properties, we get some new chromatically unique
graphs.

For any graph G, set R3(G) = R1(G)+q(G)−p(G). Clearly, R3(K1) = −1,
R3(P2) = R3(P3) = 0, and R3(K3) = 1. It is not hard to see that R3(G) is an
invariant. From Lemmas 4.2.1 to 4.2.3, we prove easily the following theorems.

Theorem 4.7.1. Let G and H be two graphs such that h(G, x) = h(H,x).
Then

R3(G) = R3(H).

Theorem 4.7.2. Let G be a graph with k components G1, G2, · · · , Gk. Then

R3(G) =
k∑

i=1

R3(Gi).

Theorem 4.7.3. Let G be a connected graph with e = uv ∈ E(G). Then

R3(G) = R3(G− e)− dG(e) + 2,

where dG(e) = |NG(u) ∪NG(v)| − 2.

Let L = {Pn, Cn+2, Dn+2, Fn+4, K4,K
−
4 ,K3|n ≥ 2}. We have

Theorem 4.7.4. Let G be a connected graph. Then
(i) R3(G) ≤ 1, and the equality holds if and only if G ∼= K3.
(ii) R3(G) = 0 if and only if G ∈ L\{K3}.

Proof. (i) By induction on q(G). By R3(K1) = −1 and R3(P2) = R3(P3) = 0,
(i) holds for q(G) ≤ 2.

Let G be a connected graph with uv ∈ E(G). We denote by (G − uv)E

the subgraph induced by E(G− uv). Suppose q(G) = k ≥ 3 and (i) holds for
q(G) < k. Choose an edge e ∈ E(G) such that (G − e)E is connected. Since
q(G) ≥ 3, one sees that dG(e) ≥ 1. We distinguish the following three cases:
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Case 1. dG(e) ≥ 2 and G − e is connected. By Theorem 4.7.3 and the
induction hypothesis,

R3(G) = R3(G− e)− dG(e) + 2 ≤ R3(G− e) ≤ 1.

Note that R3(G) = 1 if and only if R3(G − e) = 1 and dG(e) = 2. By the
induction hypothesis, G−e ∼= K3, which contradicts the fact that G is a simple
graph. So, R3(G) ≤ 0.

Case 2. dG(e) = 1 and G−e is connected. Note that e = uv must be an edge
of a triangle in G such that d(u) = d(v) = 2. If G ∼= K3, then R3(K3) = 1. If
G 6∼= K3, then we can choose a new edge u′v′ in the triangle such that d(u′) ≥ 3
or d(v′) ≥ 3. It is obvious that dG(u′v′) ≥ 2 and that G − u′v′ is connected.
By Case 1, (i) holds.

Case 3. G− e is disconnected. Remembering that (G− e)E is connected, we
know that e must be a pendant edge, that is G − e ∼= (G − e)E ∪ K1 . By
R3(K1) = −1 and Theorems 4.7.2 and 4.7.3, R3(G) = R3((G−e)E)−dG(e)+1.
By the induction hypothesis, we have

R3(G) = R3((G− e)E)− dG(e) + 1 ≤ R3((G− e)E) ≤ 1,

and R3(G) = 1 if and only if R3(G − e)E = 1 and dG(e) = 1. So, by the
induction hypothesis, (G − e)E

∼= K3. Clearly, there exists no edge e in G

such that dG(e) = 1 and (G − e)E
∼= K3. Hence R3(G) ≤ 0. This completes

the proof of (i).
(ii) We prove (ii) by induction on q(G). Since R3(K1) = −1 and R3(P2) =

R3(P3) = 0, we know that (ii) holds if q(G) ≤ 2.
Let G be a connected graph. Suppose q(G) = k ≥ 3 and (ii) holds when

q(G) < k. We can choose e ∈ E(G) such that (G − e)E is connected and
dG(e) ≥ 1. We distinguish the following two cases:

Case 1. G − e is connected. Clearly, G contains at least one cycle. Note
that q(G) ≥ 3 and R3(K3) = 1. If G 6∼= K3, then we can choose an edge
e such that dG(e) ≥ 2 and G − e is connected. Since R3(G) = 0, we have
dG(e) = R3(G− e) + 2, by Theorem 4.7.3. So, for each G 6∼= K3, we only need
consider the following two subcases:
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Case 1.1. R3(G − e) = 1 and dG(e) = 3. By the induction hypothesis,
G− e ∼= K3. Clearly, this is impossible.

Case 1.2. R3(G − e) = 0 and dG(e) = 2. By the induction hypothesis,
G− e ∈ L\{K3}. If G− e ∈ {Pn|n ≥ 2}, then G ∈ {Cn, Dm|n ≥ 4,m ≥ 4}; if
G−e ∈ {Cn|n ≥ 4}, then G ∼= K−

4 (only if G−e ∼= C4); if G−e ∈ {Dn|n ≥ 4},
then G ∈ {K−

4 , Fn|n ≥ 6}; if G−e ∼= K−
4 , then G ∼= K4; if G−e ∈ {Fn,K4|n ≥

6}, then G has no edge e such that dG(e) = 2, which is impossible.

Case 2. G− e is disconnected. It is obvious that e must be a pendant edge.
From Theorem 4.7.2, we have R3(G− e) = R3((G− e)E)− 1. Hence, we have
dG(e) = R3((G − e)E) + 1 by Theorem 4.7.3. Since R3(G) ≤ R3((G − e)E),
we only consider the following two subcases:

Case 2.1. R3((G − e)E) = 1 and dG(e) = 2. By the induction hypothesis,
(G− e)E

∼= K3. Since e must be a pendant edge in G, we have G ∼= D4.

Case 2.2. R3((G − e)E) = 0 and dG(e) = 1. By the induction hypothesis,
(G− e)E ∈ L\{K3}. If (G− e)E ∈ {Pn|n ≥ 2}, then G ∈ {Pn|n ≥ 3}; if (G−
e)E ∈ {Dn|n ≥ 4}, then G ∈ {Dn|n ≥ 5}; if (G− e)E ∈ {Cm, Fn,K4,K

−
4 |m ≥

4, n ≥ 6}, then G has no an edge e such that dG(e) = 1, which is impossible.
Conversely, the necessity of (ii) follows from Lemma 4.2.3 immediately. ¤

Remark 4.7.1. An alternative proof of Theorem 4.7.4 was given by Dong,
Teo, Little and Hendy in [27].

Theorem 4.7.5. Let Fa = {aK3 ∪
⋃

i Gi|Gi ∈ L and h(K3) 6 |h(Gi)}, where
a is a nonnegative integer. Then Fa is adjointly closed.

Proof: Suppose that G ∈ Fa and H ∼h G. It is sufficient to prove that
H ∈ Fa. Namely, we show that H contains exactly a components K3 and that
each component of H belongs to L.

Clearly, h(H) = h(G). Denote by NA the number of components K3

in H. By Theorems 4.7.1, 4.7.2 and 4.7.4, we have R3(G) = R3(H) = a

and NA ≥ a. Since h1(K3) is irreducible over the rational number field and
[h(K3)]a+1 6 |h(G), we have [h1(K3)]a+1 6 |h(H), so, NA ≤ a. Thus NA = a,
which implies H has exactly a components K3 and R3(Hi) = 0 for every com-
ponent Hi of H, except for K3. By Theorem 4.7.4, Hi ∈ L for each i and
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H ∈ Fa. ¤

We denote by A,Ai, B, Bi, C,Mi, E and Ei the multisets of certain positive
integers, where i = 1, 2.

Theorem 4.7.6. Let a, t, r be nonnegative integers and let G = (∪i∈APi) ∪
(∪j∈BCj)∪(∪k∈MDk)∪(∪s∈EFs)∪aK3∪tK−

4 ∪rK4, where i ≥ 2, i 6≡ 4(mod 5)
and i is even, j ≥ 5, k 6≡ 3(mod 5) and k ≥ 9, s 6≡ 2(mod 5) and s ≥ 6. Then
G is χ–unique if and only if j 6= i + 1 if 2 6∈ A, or j 6= 6, 9, 15 and j 6= i + 1 if
2 ∈ A.

Proof. By Theorem 1.1.1, it is not difficult to see that we need only consider
the necessary and sufficient condition for G to be adjointly unique.

Let H be a graph such that h(H) = h(G). By Theorem 2.2.5, we get that
h1(K3) = h1(P4) 6 |h1(Y ) for each Y ∈ {Pi|i ≥ 2, i 6≡ 4(mod 5)}∪ {Cj |j ≥ 4}∪
{Dk|k ≥ 4, k 6≡ 3(mod 5)} ∪ {Fs|s ≥ 6, s 6≡ 2(mod 5)}. So, by Theorem 4.7.5,
H ∈ Fa. Assume H = aK3 ∪H1 and G = aK3 ∪ G1. Then, h(G1) = h(H1).
Without loss of generality, by Theorems 4.7.4 and 4.7.5, we may assume that

G1 = (∪i∈APi) ∪ (∪j∈BCj) ∪ (∪k∈MDk) ∪ (∪s∈EFs) ∪ tK−
4 ∪ rK4

and

H1 = (∪i1∈A1Pi1) ∪ (∪j1∈B1Cj1) ∪ (∪k1∈M1Dk1) ∪ (∪s1∈E1Fs1) ∪ t1K
−
4 ∪ r1K4,

where i, j, k and s satisfy the condition of the theorem.
It suffices to prove H1

∼= G1. Since h1(D8) = (x2 +5x+4)h1(K3), we have
that H1 does not contain the component D8. By calculation, we have that
h1(K4) = x3 + 6x2 + 7x + 1 and h(F6) = x4 + 7x3 + 13x2 + 7x + 1. It is easy
to verify that β(K4) < β(F6). Thus, by Theorem 3.2.5 we have

β(K4) < β(F6) < β(F7) < · · · < β(Fn−1) < β(Fn) < β(Dm)
< β(Dm−1) < · · · < β(D9) < β(D8) = β(K−

4 ) = −4.

By comparing the minimum real roots of h1(G1) with those of h1(H1), we
know that r = r1, t = t1, |E| = |E1| and M ⊆ M1. Eliminating all components
G∗ with β(G∗) ≤ −4 from G1 and H1, we obtain

h((∪i∈APi) ∪ (∪j∈BCj)) = h((∪i∈A1Pi) ∪ (∪j∈B1Cj) ∪ (∪k∈M2Dk)),
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where M2 = M1\M .
By Theorem 4.3.2, we know that (∪i∈APi) ∪ (∪j∈BCj) is χ–unique if and

only if j 6= i + 1 if 2 6∈ A, or j 6= 6, 9, 15 and j 6= i + 1 if 2 ∈ A, when i and
j satisfy the condition of the theorem. Hence M2 = φ and M = M1, which
implies H1

∼= G1 and H ∼= G. ¤

In particular, from Theorem 4.7.6 we have

Corollary 4.7.1. Let k 6≡ 3(mod 5) and k ≥ 9, s 6≡ 2(mod 5) and s ≥ 6.
Then (∪sFs) ∪ (∪kDk) is χ–unique.

Corollary 4.7.2. Let K(n1, n2, · · · , nt) be the complete t-partite graph. Then
K(2, · · · , 2, 3, · · · , 3, 4, · · · , 4) is χ-unique.

Remarks

In this chapter, we investigated the chromaticity of some dense graphs, by
using results obtained in Chapters 2 and 3. By using the fact β(H) = β(G) if
H ∼h G and Theorem 3.3.2, we established a necessary and sufficient condition
of chromatic uniqueness of a dense graph such that its minimum degree is
greater than or equal to the number of vertices minus 3, see Theorems 4.3.1,
4.3.2 and 4.3.3. Theorem 4.3.4 gave a necessary and sufficient condition for
∪iUni , where ni ≥ 6, to be chromatically unique. Theorems 4.4.3 and 4.4.4
gave a necessary and sufficient condition for two graphs H and G with the
minimum real roots of their adjoint polynomials greater than or equal to −4
to be adjointly equivalent. Theorem 4.3.1 gave a negative answer to two
conjectures proposed in 2002 by Dong, Teo, Little and Hendy in Discrete
Mathematics. By using results on invariants R1(G) and R2(G), some results
on the divisibility between h(Pn) with the adjoint polynomials of some special
graphs, see Theorems 2.2.4 and 2.2.5, and some inequalities on the minimum
real roots of the adjoint polynomials of some special graphs, see Theorems
3.2.5 and 3.2.6, we got some new chromatically unique graphs, see Theorems
4.5.1 and 4.5.2 and Corollaries 4.5.1 and 4.5.2 in Section 4.5, and all adjointly
equivalent graphs for two classes of graphs with R1(G) = −1, see Theorems
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4.6.3 and 4.6.4 in Section 4.6. A new invariant R3(G) in Section 4.7 was
introduced and some properties of R3(G) were found, see Theorems 4.7.1 to
4.7.4. By using these properties, we obtained some new chromatically unique
graphs, see Theorem 4.7.6 and Corollaries 4.7.1 and 4.7.2. Although all graphs
studied in this chapter have no close relation with those in Chapters 5 and 6,
from a byproduct of this chapter, i.e., Corollary 4.7.2, we feel that we shall
get some new results on the chromaticity of complete multipartite graphs, by
using some properties of adjoint polynomials. In Chapter 5, we shall study
the chromaticity of complete multipartite graphs, by using the results on the
minimum real roots of adjoint polynomials.



Chapter 5

The Chromaticity of

Complete Multipartite

Graphs

5.1 Introduction

In Chapter 4, by using results obtained in Chapters 2 and 3 we investigated the
chromaticity of dense graphs of form Kn−E(H), where H is the union of some
sparse graphs. Naturally, we wish to obtain some results on the chromaticity
of complete multipartite graphs by applying some results in Chapters 2 and
3. Indeed, in this chapter, we get two interesting results, which confirm a
conjecture and a problem posed by Koh and Teo in 1990, by applying some
results on the minimum real roots of adjoint polynomials.

For the chromaticity of complete multipartite graphs, some researchers,
including Chao, Dong, Koh, Novacky, Peng, Teo, Solzberg, López, Guidici et
al., focused on the chromaticity of complete bipartite graphs. After Teo and
Koh [71] showed that all complete bipartite graphs K(n, m) are χ-unique, for
n ≥ m ≥ 2, many results on the chromaticity of complete multipartite graphs
were found, see [18, 41, 43, 48, 83-88].

In particular, the authors in [7, 18, 43] obtained the following χ-unique
graphs:

105
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(i) K(n1, n2, · · · , nt), for |ni − nj | ≤ 1 and ni ≥ 2, i = 1, 2, · · · , t;

(ii) K(n, n, n + k), for n ≥ 2 and 0 ≤ k ≤ 3;

(iii) K(n− k, n, n), for n ≥ k + 2 and 0 ≤ k ≤ 3;

(iv) K(n− k, n, n + k), for n ≥ 5 and 0 ≤ k ≤ 2.

From 1998 to 2002, Zou and Shi in [83-88] gave some χ-unique complete
tripartite graphs as follows.

(i) K(n− k, n, n), for n > k + k2/3;

(ii) K(n, n, n + k), for n > (k + k2)/3;

(iii) K(n− k, n, n + k), for n > k2 + 2
√

3
3 k;

(iv) K(n− 4, n, n), for n ≥ 6.

In [48], Li and Liu showed that K(1, n2, · · · , nt) is χ-unique if and only if
max{ni|i = 2, 3, · · · , t} ≤ 2.

In [41], Giudici and Lopez proved that the complete t-partite graph K(n−
1, n, · · · , n, n + 1), for t ≥ 2 and n ≥ 3, is χ-unique.

In 1990, the authors in [18, 43] proposed the following conjecture and
problem:

Conjecture 5.1.1. ([18, 43]) For any integers n and k with n ≥ k + 2 ≥ 4,
K(n− k, n, n) is χ-unique.

Problem 5.1.1. ([43]) Let t ≥ 2. Is the graph K(n1, n2, · · · , nt) χ-unique if
|ni−nj | ≤ 2, for all i, j = 1, 2, · · · , t, and sufficiently large min{n1, n2, · · · , nt}?

In this chapter, we first give some basic lemmas in Section 5.2. Then
in Section 5.3 we investigate the chromaticity of K(r,m, n), for n ≥ m ≥
r ≥ 2, and give a positive answer to the above conjecture. We also show that
K(n−k, n−1, n), for n ≥ 2k and k ≥ 2, is χ-unique. In Sections 5.4 and 5.5, by
using some results of the minimum real roots of adjoint polynomials, we show
that the complete t-partite graphs K(n − k, n, n, · · · , n) is χ-unique, for all
k ≥ 2, n ≥ k+2 and t ≥ 3. Some sufficient conditions for K(n1, n2, · · · , nt) to
be chromatically unique are established. Furthermore we solve Problem 5.1.1
completely.

For a graph G, let S ∈ E(G) and |S| = s, we denote by G− S (or G− s)
the graph obtained from G by deleting all edges of S and write αt(G− S) =
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α(G−S, t)−α(G, t). Denote by Tn,t the unique complete t-partite graph such

that n =
t∑

i=1
ni and |ni − nj | ≤ 1, for all i, j = 1, 2, · · · , t.

5.2 Some basic lemmas

For disjoint graphs G and H, we recall that G+H denotes the join graph of G

and H with vertex set V (G)∪V (H) and with edge set {xy|x ∈ V (G) and y ∈
V (H)} ∪ E(G) ∪ E(H). In fact, G + H = G ∪H.

Lemma 5.2.1. ([4, 5]) Let G and H be two disjoint graphs. Then

σ(G + H,x) = σ(G, x)σ(H, x).

In particular,

σ(K(n1, n2, n3, · · · , nt), x) =
t∏

i=1

σ(Oni , x).

Remark 5.2.1. The above lemma is equivalent to the following: Let G and
H be two disjoint graphs. Then

h(G ∪H, x) = h(G, x)h(H, x).

In particular,

h(K(n1, n2, n3, · · · , nt), x) =
t∏

i=1

h(Kni , x).

Lemma 5.2.2. ([4, 70]) Let S(n, k) denote the Stirling number of the second
kind. Then
(i) σ(On, x) =

n∑
i=1

S(n, i)xi, where On = Kn;

(ii) S(n, 1) = 1 and S(n, 2) = 2n−1 − 1.

From Lemmas 5.2.1 and 5.2.2, we have

Lemma 5.2.3. Let G = K(n1, n2, · · · , nt). Then
(i) for 1 ≤ r ≤ t− 1, α(G, r) = 0,

(ii) α(G, t) = 1 and α(G, t + 1) =
t∑

i=1
2ni−1 − t.
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Lemma 5.2.4. ([6]) Let G = K(n1, n2, · · · , nt) with n vertices. Then
(i) q(G) ≤ q(Tn,t), where equality holds if and only if G = Tn,t;
(ii) q(Tn,t)− q(G) ≥ max{ni|i = 1, · · · , t} −min{ni|i = 1, · · · , t} − 1.

Lemma 5.2.5. ([43]) Let G and H be two graphs with G ∼ H. Then
|V (G)| = |V (H)|, |E(G)| = |E(H)|, NA(G) = NA(H) and α(G, r) = α(H, r)
for r = 1, 2, 3, · · · , p(G).

Lemma 5.2.6. Let G = K(n1, n2, · · · , nt) with
t∑

i=1
ni = n and n1 ≤ n2 ≤

· · · ≤ nt. Suppose that H is a graph such that H ∼ G. Then there is a graph
F = K(m1, m2, · · · , mt) with m1 ≤ m2 · · · ≤ mt and there is a set S of s edges
in F such that H = F − S, s = q(F ) − q(G) ≥ 0 and F and G must satisfy
the following conditions:

(i)
t∑

i=1
mi =

t∑
i=1

ni = n,

(ii) m1 ≥ n−√(t−1)
P

1≤i<j≤t(ni−nj)2

t , and

(iii) n1 ≥ n−√(t−1)
P

1≤i<j≤t(ni−nj)2

t .

Proof. Since H ∼ G = K(n1, n2, · · · , nt), we have that σ(H, x) = σ(G, x) =
σ(K(n1, n2, · · · , nt), x). From Lemma 5.2.3, α(H, t) = α(G, t) = 1, which
means that V (H) has the unique t-independent partition, say {A1, A2, · · · , At}.
Since α(H, r) = α(G, r) = 0, for r ≤ t − 1, we have that H is a t-partite
graph. Let |Ai| = mi, i = 1, 2, · · · , t. Then there is a set S of s edges in
F = K(m1,m2, · · · ,mt) such that H = F − S. Remembering that σ(H, x) =

σ(G, x), we have that p(H) = p(G) and q(H) = q(G). Clearly,
t∑

i=1
mi =

t∑
i=1

ni = n and s = q(F )− q(G) ≥ 0, which implies that (i) is true.

Now we prove (ii) and (iii). Let z denote the minimum value of m1 such
that s ≥ 0. Then q(K(z,m2,m3, · · · ,mt))−q(G) ≥ 0 for some (m2,m3, · · · ,mt).
Denote by K(z, y2, · · · , yt) the complete t-partite graphs with z ≤ y2 ≤
y3 · · · ≤ yt and |yi − yj | ≤ 1, for i, j = 2, 3, · · · , t, where

t∑
i=2

yi = n − z.

Note that

q(K(m1, · · · ,mi−1,mi + 1,mi+1, · · · , mj−1,mj − 1,mj+1, · · ·mt))−
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q(K(m1, · · · ,mi−1,mi, mi+1, · · · ,mj−1,mj ,mj+1, · · ·mt)) = mj −mi − 1

for i < j and mi < mj . So, it is not difficult to see that q(K(z, y2, · · · , yt)) ≥
q(K(z, m2, m3, · · · , mt)), for all (m2,m3, · · · ,mt), and q(K(z, y2, · · · , yt)) ≤
z(n− z)+ (t−1)(t−2)

2

(
n−z
t−1

)2
. Therefore, one can see that if s ≥ 0, then z must

satisfy the following inequality:

z(n− z) +
(t− 1)(t− 2)

2

(
n− z

t− 1

)2

− q(G) ≥ 0.

By solving the above inequality, we have

n−
√

(t− 1)((t− 1)n2 − 2q(G)t)
t

≤ z ≤ n +
√

(t− 1)((t− 1)n2 − 2q(G)t)
t

.

Since q(G) =
∑

1≤i<j≤t
ninj and n =

t∑
i=1

ni, we have

(t− 1)n2 − 2q(G)t =
∑

1≤i<j≤t

(ni − nj)2.

So, (ii) holds.

Taking z = n1, we have

z(n− z) +
(t− 1)(t− 2)

2

(
n− z

t− 1

)2

− q(G) ≥ q(G)− q(G) ≥ 0.

Hence, n1 ≥ n−√(t−1)
P

1≤i<j≤t(ni−nj)2

t , which implies that (iii) holds. ¤

Lemma 5.2.7. Let G = K(n1, n2, · · · , nt) and let H = G − S for a set S of
s edges of G. If min{ni|i = 1, 2, · · · , t} ≥ s + 1, then

s ≤ αt+1(H) = α(H, t + 1)− α(G, t + 1) ≤ 2s − 1,

αt+1(H) = s if and only if the subgraph induced by any r ≥ 2 edges in S is
not a complete multipartite graph, and αt+1(H) = 2s − 1 if and only if all s

edges in S share a common end-vertex and the other end-vertices belong to the
same Ai for some i.
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Proof. Obviously, a (t + 1)-independent partition of V (G) is a (t + 1)-
independent partition of V (H); however, the converse is not always true. So,
for a (t+1)-independent partition B of V (H), we have the following two cases.
Case 1. B is a (t + 1)-independent partition of V (G).
Case 2. B is not a (t + 1)-independent partition of V (G).

Clearly, the number of (t + 1)-independent partitions B of V (H) in Case
1 is α(G, t + 1). Next we consider the (t + 1)-independent partitions B of
V (H) in Case 2. Let {A1, A2, · · · , At} be the unique t-independent partition
of V (G), and let b(H) = {B0|B0 is an independent set in H and there are at
least two Ai such that B0 ∩ Ai 6= φ}. Since min{ni|i = 1, 2, · · · , nt} ≥ s + 1,
we know that Ai − B0 6= φ, for any i = 1, 2, · · · , t, where Ai − B0 denotes
the subset of Ai obtained by deleting all elements of B0 from Ai (otherwise,
for some i we would have Ai ⊆ B0, and so |B0| ≥ |Ai| ≥ s + 1, which would
imply that B0 is not an independent set in H, since B0 intersects at least two
Ai and we only deleted s edges from G to get H). So, we see that B0 ∈ b(H)
if and only if {B0, A1 − B0, · · · , At − B0} is a (t + 1)-independent partition
of V (H) of Case 2. Thus, we have α(H, t + 1) = α(G, t + 1) + |b(H)|, i.e.,
α(H, t + 1)− α(G, t + 1) = |b(H)|. Note that each B0 of b(H) is composed of
pairs of end-vertices of some edges in S. We thus have

s ≤ |b(H)| = αt+1(H) ≤ 2s − 1.

It is not difficult to see that the lower bound s can be reached if and only if the
set of all end-vertices of any r ≥ 2 edges in S is not an independent set and
the upper bound 2s− 1 can be reached if and only if the set of all end-vertices
of any r ≥ 1 edges is an independent set. ¤

Lemma 5.2.8. ([71]) Let n ≥ m ≥ 2. Then K(n,m) is χ-unique.

5.3 The chromaticity of complete tripartite graphs

In this section, we study the chromaticity of complete tripartite graphs by
computing the number of triangles of the complete tripartite graphs.

Theorem 5.3.1. For any integers n ≥ m ≥ r ≥ 2, we have [K(r,m, n)] ⊆
{K(x, y, z) − S|1 ≤ x ≤ y ≤ z, m ≤ z ≤ n, x + y + z = n + m + r, S ⊂
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E(K(x, y, z)) and |S| = xy+xz+yz−nm−nr−mr}. In particular, if z = n,
K(r,m, n) = K(x, y, z).

Proof. Let G = K(r,m, n) and H ∼ G. We prove that H ∈ {K(x, y, z) −
S|1 ≤ x ≤ y ≤ z, m ≤ z ≤ n, x+y+z = n+m+r, S ⊂ E(K(x, y, z)) and |S| =
xy + xz + yz − nm− nr −mr}.

From Lemma 5.2.6, we know that there exists a graph F = K(x, y, z)
and S ⊂ E(F ) such that H = F − S and |S| = s. We may assume that
1 ≤ x ≤ y ≤ z. Clearly, s = q(F )− q(G) = xy + xz + yz − nm− nr−mr and
x + y + z = n + m + r. Now we only prove that m ≤ z ≤ n.

Since H ∼ G, by Lemma 5.2.5 we get NA(G) = NA(H). We consider
the numbers of triangles in G and H. Without loss of generality, let S =
{e1, e2, · · · , es} ⊂ E(F ). Denote by NA(ei) the number of triangles containing
the edge ei in F . It is not hard to see that NA(ei) ≤ z. Then

NA(H) ≥ NA(F )− sz, (5.1)

and the equality holds if and only if NA(ei) = z, for all ei ∈ S.
Let β = NA(F )−NA(G). It is obvious that NA(F ) = xyz, NA(G) = nmr

and β = xyz − nmr. So, we have

NA(G) = NA(F )− β. (5.2)

Since NA(G) = NA(H), from (5.1) and (5.2) it follows that

β ≤ sz. (5.3)

Let f(z) = β − sz. Recalling that x + y = n + m + r − z, β = xyz − nmr

and s = xy + xz + yz − nm− nr −mr, we have

f(z) = xyz − nmr − [xy + (x + y)z − nm− nr −mr]z
= (z − n)(z −m)(z − r).

(5.4)

From the fact that x + y + z = n + m + r and x ≤ y ≤ z, we have z ≥
n+m+r

3 ≥ r. Note that if z = r, then n = m = r, which implies K(n,m, r) =
K(n, n, n). Clearly, z = m = n. For z 6= r, from (5.4) we have that the
inequality (5.3) holds if and only if m ≤ z ≤ n. So, H ∈ {K(x, y, z) − S|1 ≤
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x ≤ y ≤ z,m ≤ z ≤ n, |S| = xy + xz + yz − nm − nr − mr, x + y + z =
n + m + r, S ⊂ E(K(x, y, z)}.

We now prove that K(x, y, z) = K(n,m, r) if z = n. Suppose that z = n.
We distinguish the following cases.

Case 1. m < y ≤ n. Clearly x + y = m + r and x < r. Hence s =
xy + xn + yn−nm−nr−mr = xy−mr. One can show that s < 0, for x < r

and y > m. This contradicts s ≥ 0.

Case 2. y = m. Then x = r and F = K(r,m, n). So, s = 0 and H = G.

Case 3. x ≤ y < m. Let {X1, X2, X3} be the unique 3-independent partition
of K(x, y, n) such that |X1| = x, |X2| = y and |X3| = n. By f(z) = f(n) = 0,
we have that β = sn. From (5.1) and (5.2), we have NA(G) = NA(H) =
NA(F ) − sn and NA(ei) = n, for all ei ∈ S. Thus for every edge ei in S,
an end-vertex of ei belongs to X1, whereas the other end-vertex of ei belongs
to X2. Hence H contains Kn as its component. Set H = H1 ∪ Kn. Then
H = H1 + On. From Lemma 5.2.1 and σ(H) = σ(K(r,m, n)), we have

σ(H1)σ(On) = σ(Or + Om)σ(On).

So
σ(H1) = σ(Or + Om),

which implies that P (H1, λ) = P (Kr,m, λ). Hence, from Lemma 5.2.8 and the
condition of the theorem, we have H1 = Kr,m. So, y = m, which contradicts
y < m. This completes the proof. ¤

From Theorem 5.3.1, we know that z = n if n = m. Therefore a positive
answer to Conjecture 5.1.1 is described in the following theorem.

Theorem 5.3.2. For any integers n and k with n ≥ k +2 ≥ 4, K(n−k, n, n)
is χ-unique.

Further we can give a new class of χ-unique complete tripartite graphs as
follows.

Theorem 5.3.3. For any integers n and k with n ≥ 2k ≥ 4, K(n−k, n−1, n)
is χ-unique.
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Proof. Let G = K(n− k, n− 1, n) and H ∼ G. We prove that H ∼= G.
By Theorem 5.3.1, we have that H ∈ {K(x, y, z)−S|1 ≤ x ≤ y ≤ z, n−1 ≤

z ≤ n, |S| = xy + xz + yz − 3n2 + 2nk + 2n− k, x + y + z = 3n− k − 1} and
H = G, for z = n. For z = n− 1, we distinguish the following cases.

Case 1. y = z = n − 1. Then H = K(n − k + 1, n − 1, n − 1) − S. Let
F = K(n−k+1, n−1, n−1) and |S| = s. Obviously, s = q(F )−q(G) = k−1.
Let α4(H) = α(H, 4)− α(F, 4). From Lemma 5.2.3,

α(G, 4) = 2n−k−1 + 2n−2 + 2n−1 − 3, (5.5)

α(H, 4) = 2n−k + 2n−1 − 3 + α4(H). (5.6)

By the condition, n − k + 1 ≥ k + 1 ≥ s + 2. By Lemma 5.2.7, it follows
that s ≤ α4(H) ≤ 2s − 1. Since k ≥ 2, from (5.5) and (5.6) it follows that

α(G, 4)− α(H, 4) > 2n−3 − α4(H).

Remembering that the condition of the theorem and that s = k − 1, we have
immediately that

α(G, 4)− α(H, 4) > 2k−1 − 2k−1 + 1 ≥ 1.

This contradicts α(G, 4) = α(H, 4).

Case 2. z = n − 1 and x ≤ y ≤ n − 2. By arguments analogous to those
used for Case 3 of Theorem 5.3.1, we can obtain that H = H1 + On−1 and
P (H1, λ) = P (Kr,n, λ). Hence we have y = n, which contradicts y ≤ n− 2.

From Cases 1 and 2, z = n. So, H = G. ¤

5.4 The chromaticity of complete multipartite graphs

(I)

As a generalization of Section 5.3, we consider the following problems in this
section.

Problem 5.4.1. Given any integers k and t, where k ≥ 2, t ≥ 4 and n ≥ k+2,
is the complete t-partite graph K(n− k, n, · · · , n) χ-unique?
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Problem 5.4.2. Given any integers k and t, where k ≥ 2, t ≥ 4 and n ≥ k+2,
is the complete t-partite graph K(n− k, n− 1, · · · , n) χ-unique?

We denote by K+
n the graphs with n + 1 vertices obtained by adding a

pendant edge to Kn. By using the inequality on minimum real roots of the
adjoint polynomial of a graph, we get an important lemma as follows.

Lemma 5.4.1. If H is a graph such that h(H,x) =
t∏

i=1
h(Kni , x), then H does

not contain a K+
nt

as its component, where n1 ≤ n2 ≤ · · · ≤ nt.

Proof. Suppose that H contains a K+
nt

as its component. From the condition,
we have that

h(H, x) =
t∏

i=1

h(Kni , x). (5.7)

From Theorem 3.2.2 and n1 ≤ n2 ≤ · · · ≤ nt, we have that β(H) ≤ β(K+
nt

) <

β(Knt) = β

(
t∏

i=1
h(Kni , x)

)
. This contradicts equation (5.7), and the proof is

complete. ¤

Theorem 5.4.1. Let 2 ≤ n1 ≤ n2 · · · ≤ nt and G = K(n1, n2, · · · , nt). If
H ∼ G, then

(i) H ∈ [G] ⊂ {K(x1, x2, · · · , xt)− S|1 ≤ x1 ≤ x2 · · · ≤ xt ≤ nt,
t∑

i=1
xi =

t∑
i=1

ni, S ⊂ E(K(x1, x2, · · · , xt))};
(ii) there exists an integer b ≥ 2 such that x1 ≤ x2 · · · ≤ xb ≤ nb − 1 and Kni

is a component of H for any i ≥ b + 1;
(iii) if xi = ni, for any i ≥ 3, then G = H.

Proof. (i) Let H be a graph such that H ∼ G. We only need prove that

H ∈ {K(x1, x2, · · · , xt) − S|1 ≤ x1 ≤ x2 · · · ≤ xt ≤ nt,
t∑

i=1
xi =

t∑
i=1

ni, S ⊂
E(K(x1, x2, · · · , xt))}.

From Lemma 5.2.6, we know that there exists a complete t–partite graph
F = K(x1, x2, · · · , xt) and S ⊂ E(F ) such that H = F − S, |S| = s =

q(F ) − q(G) and
t∑

i=1
xi =

t∑
i=1

ni. Without loss of generality, we may assume
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that 1 ≤ x1 ≤ x2 ≤ · · · ≤ xt. Since h(H) = h(G), from Theorem 2.1.1 and
Lemma 5.2.1 we have that

h(H) =
t∏

i=1

h(Kni). (5.8)

From (5.8) and Lemma 5.4.1, it is clear that H does not contain any K+
nt

as
its component. So we can see that xt ≤ nt. Hence (i) holds.

(ii) From the proof of (i), it is obvious that xt = nt or xt ≤ nt − 1. When
xt = nt, Knt must be a component of H (otherwise, H contains a K+

nt
as its

component). So, we have that if xt = nt, then x1 ≤ x2 · · · ≤ xt−1 ≤ nt−1. Let
H = H ′ ∪Knt . From Theorem 2.1.1 and (5.8), it follows that

h(H ′) =
t−1∏

i=1

h(Kni). (5.9)

Similarly, we can show that xt−1 < nt−1 or xt−1 = nt−1. So, one can see
that

(*) if xt = nt and xt−1 < nt−1, then x1 ≤ x2 · · · ≤ xt−1 ≤ nt−1 − 1, while
(**) if xt = nt and xt−1 = nt−1, then H ′ has a component Knt−1 .

Repeating this procedure for (**), we know that there exists an integer b ≥ 2
such that x1 ≤ x2 · · · ≤ xb ≤ nb − 1 and Kni is a component of H, for any
i ≥ b + 1.

(iii) From (ii), we see that if b = 2, then H has t − 2 components: Kn3 ,

Kn4 , · · · , Knt . Let H = H ′′ ∪
t⋃

i=3
Kni . Thus, by Theorem 2.1.1 and Lemma

5.2.1, it follows easily that

h(H ′′)
t∏

i=3

h(Kni) =
t∏

i=1

h(Kni). (5.10)

From (5.10), we have that

h(H ′′) = h(Kn1)h(Kn2). (5.11)

By (1.1) and (1.2), one sees that P (H ′′, λ) = P (K(n1, n2), λ). From Lemma
5.2.8 and the conditions of the theorem, it is not difficult to see that H ′′ =

K(n1, n2). So, H =
t⋃

i=1
Kni , i.e., G = H. ¤
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Theorem 5.4.2. For any positive integers n ≥ k + 2, k ≥ 2 and t ≥ 3, the
complete t-partite graph K(n− k, n, n, · · · , n) is χ-unique.

Proof. Let G = K(n− k,

t−1︷ ︸︸ ︷
n, n, · · · , n). Assume that H is a graph such that

H ∼ G. We need prove that H ∼= G.
By Theorem 5.4.1, we know that there exists a graph F = K(x1, x2, · · · , xt)

and S ⊂ E(F ) such that H = F − S and |S| = s = q(F ) − q(G), where
q(F ) =

∑
1≤i<j≤t

xixj and q(G) = (t− 1)(n− k)n +
(
t−1
2

)
n2, and 1 ≤ x1 ≤ x2 ≤

· · · ≤ xt ≤ n and
t∑

i=1
xi = nt−k. Let S = {e1, e2, · · · , es} ⊂ E(F ), and denote

by NA(ei) the number of triangles of F containing the edge ei. It is easy to

see that NA(ei) ≤
t∑

i=3
xi, and thus

NA(H) ≥ NA(F )− s
t∑

i=3

xi, (5.12)

where the equality holds if and only if NA(ei) =
t∑

i=3
xi, for all ei ∈ S. Let α =

NA(F ) − NA(G). It is obvious that NA(F ) =
∑

1≤i<j<l≤t

xixjxl and NA(G) =
(
t−1
2

)
n2(n− k) +

(
t−1
3

)
n3. So, we have that

α =
∑

1≤i<j<l≤t

xixjxl −
(

t− 1
2

)
n2(n− k)−

(
t− 1

3

)
n3 (5.13)

and
NA(G) = NA(F )− α. (5.14)

From Lemma 5.2.5, NA(G) = NA(H), and thus, from (5.12) and (5.14), the
following inequality must hold:

α ≤ s
t∑

i=3

xi. (5.15)

Assume that f(x3, x4, · · · , xt) = α− s
t∑

i=3
xi, and denoted by f1. Since

α = x1x2

t∑

i=3

xi + (x1 + x2)
∑

3≤i<j≤t

xixj +
∑

3≤i<j<l≤t

xixjxl
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−
(

t− 1
2

)
n2(n− k)−

(
t− 1

3

)
n3

and

s = x1x2 + (x1 + x2)
t∑

i=3

xi +
∑

3≤i<j≤t

xixj − (t− 1)(n− k)n−
(

t− 1
2

)
n2,

from x1 + x2 = nt− k −
t∑

i=3
xi, we have, by calculation, that

f1 = (x1 + x2)

[
∑

3≤i<j≤t
xixj −

(
t∑

i=3
xi

)2
]

+
∑

3≤i<j<l≤t

xixjxl

− ∑
3≤i<j≤t

xixj

t∑
i=3

xi +
[
(t− 1)(n− k)n +

(
t−1
2

)
n2

] t∑
i=3

xi

−(
t−1
2

)
n2(n− k)− (

t−1
3

)
n3

= (nt− k −
t∑

i=3
xi)

[
∑

3≤i<j≤t
xixj −

(
t∑

i=3
xi

)2
]

+
∑

3≤i<j<l≤t

xixjxl

− ∑
1≤i<j≤t

xixj

t∑
i=3

xi +
[
(t− 1)(n− k)n +

(
t−1
2

)
n2

] t∑
i=3

xi

−(
t−1
2

)
n2(n− k)− (

t−1
3

)
n3

=
t∑

i=3
x3

i +
∑

3≤i<j≤t

(
x2

i xj + xix
2
j

)
+

∑
3≤i<j<l≤t

xixjxl − (tn− k)
t∑

i=3
x2

i

−(tn− k)
∑

3≤i<j≤t
xixj +

[
(t− 1)(n− k)n +

(
t−1
2

)
n2

] t∑
i=3

xi

−(
t−1
2

)
n2(n− k)− (

t−1
3

)
n3

=
t∑

i=3
(xi − n)2(xi − n + k) + f2,

(5.16)
where f2 = 0, for t = 3, and

f2 =
∑

3≤i<j≤t

(
x2

i xj + xix
2
j

)
+

∑
3≤i<j<l≤t

xixjxl − (t− 3)n
t∑

i=3
x2

i

−(tn− k)
∑

3≤i<j≤t
xixj +

[
(t− 4)n2 − (t− 3)nk +

(
t−1
2

)
n2

] t∑
i=3

xi

−(
t−1
2

)
n2(n− k)− (

t−1
3

)
n3 + (t− 2)n3 − (t− 2)n2k,

(5.17)
for t ≥ 4.
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Note that x1 ≤ x2 ≤ x3 ≤ · · · ≤ xt ≤ n. We may assume that xi = n− ai.
Clearly, each ai is a positive integer and a1 ≥ a2 ≥ a3 ≥ · · · ≥ at. From (5.17),
we have, by calculation, that

f2 = k
∑

3≤i<j≤t

aiaj −
∑

3≤i<j≤t

(
a2

i aj + aia
2
j

)−
∑

3≤i<j<l≤t

aiajal. (5.18)

Since
t∑

i=1
(n − ai) = nt − k and a1 ≥ a2 ≥ a3 ≥ · · · ≥ at ≥ 0, one can obtain

that k ≥ 2a3 +
t∑

i=3
ai. So, from (5.18) we can get, by simplifying, that

f2 ≥ 2a3

∑

3≤i<j≤t

aiaj + 2
∑

3≤i<j<l≤t

aiajal. (5.19)

Therefore

f2 ≥ 0. (5.20)

Recalling that x1 ≤ x2 ≤ x3 ≤ · · · ≤ xt ≤ n ,
t∑

i=1
xi = nt − k and k ≥ 2, it is

not difficult to see that xi > n− k for all i ≥ 3. So,

n∑

i=3

(xi − n)2(xi − n + k) ≥ 0 (5.21)

and the equality holds if and only if xi = n for all i ≥ 3. From (5.16), (5.19),
(5.20) and (5.21), we have that f1 ≥ 0 and the equality holds if and only if
xi = n for all i ≥ 3. So, (5.15) holds if and only if xi = n for all i ≥ 3. By
Theorem 5.4.1, it follows that H = G. ¤

With a proof similar to those of Theorems 5.4.2 and 5.3.3, by Theorem
5.4.1 one can show the following theorem.

Theorem 5.4.3. For any positive integers n ≥ 2k, k ≥ 2 and t ≥ 3, the
complete t-partite graph K(n− k, n− 1, n, · · · , n) is χ-unique.
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5.5 The chromaticity of complete multipartite graphs

(II)

In this section, we investigate the chromaticity of complete t-partite graph
K(n1, n2, · · · , nt). Some sufficient conditions for K(n1, n2, · · · , nt) to be χ-
unique are found. Moreover we give a positive answer to Problem 5.1.1.

A class of graphs is said to be chromatically normal , if for any two graphs
H and G in the class we have that H ∼ G implies H ∼= G.

Theorem 5.5.1. For a given positive integer t, Kt = {K(n1, n2, · · · , nt)|ni is
a positive integer for i = 1, 2, · · · , t} is chromatically normal.

Proof. Let H, G ∈ Kt and H ∼ G, and let H = K(m1,m2, · · · ,mt) and
G = K(n1, n2, · · · , nt). We prove that H ∼= G.

Note that P (H,λ) = P (G,λ) if and only if σ(H, x) = σ(G, x), i.e., h(H, x) =
h(G, x). From Theorem 2.1.1 and Lemma 5.2.1, we see that

t∏

i=1

h(Kmi , x) =
t∏

i=1

h(Kni , x). (5.22)

By (5.22), it is sufficient to show that ∪t
i=1Kmi

∼= ∪t
i=1Kni . We proceed

by induction on t. When t = 1, the theorem obviously holds.
Suppose t = k ≥ 2 and the theorem holds when t ≤ k − 1. Without

loss of generality, we assume that m1 = max{m1,m2, · · · ,mt} and n1 =
max{n1, n2, · · · , nt}. By Theorem 3.2.2, β(Kn) < β(Kn−1), for n ≥ 2. Thus,
we know that the minimum real roots of the left-hand side of equality (5.22)
are β(Km1), whereas the minimum real roots of the right-hand side of equality
(5.22) are β(Kn1). Hence we have

β(Km1) = β(Kn1),

which implies that n1 = m1. Eliminating a factor h(Km1 , x)(= h(Kn1 , x))
from both sides of equality (5.22), we have

t∏

i=2

h(Kmi , x) =
t∏

i=2

h(Kni , x).
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By the induction hypothesis, we have

∪t
i=2Kmi

∼= ∪t
i=2Kni .

Hence,
∪t

i=1Kmi
∼= ∪t

i=1Kni ,

as required. ¤

Theorem 5.5.2. Let G = K(n1, n2, · · · , nt) and n =
t∑

i=1
ni. If n ≥ tq(Tn,t)−

tq(G) + t +
√

(t− 1)
∑

1≤i<j≤t(ni − nj)2, then G is χ-unique.

Proof. Let H be a graph such that H ∼ G. Obviously, α(H, t + 1) =
α(G, t + 1). We show that H ∼= G, by comparing the number of (t + 1)-
independent partitions of H with that of G.

From Lemma 5.2.6, we have that there is a graph F = K(m1,m2, · · · ,mt)

such that
t∑

i=1
mi =

t∑
i=1

ni = n with the property that there is a set S of s

edges in F such that H = F − S and s = q(F ) − q(G) ≥ 0. Note that
αt+1(H) = α(H, t+1)−α(F, t+1). Clearly, αt+1(H) ≥ 0. From the condition
n ≥ tq(Tn,t)− tq(G) + t +

√
(t− 1)

∑
1≤i<j≤t(ni − nj)2, we have

n−
√

(t− 1)
∑

1≤i<j≤t(ni − nj)2

t
≥ q(Tn,t)− q(G) + 1.

So, from Lemmas 5.2.4 and 5.2.6, it follows that min{mi|i = 1, 2, · · · , t} ≥
q(Tn,t)−q(G)+1 ≥ s+1 and min{ni|i = 1, 2, · · · , t} ≥ q(Tn,t)−q(G)+1 ≥ s+1.
From Lemma 5.2.7, we have s ≤ αt+1(H) ≤ 2s−1. Since α(G, t+1)−α(H, t+
1) = α(G, t + 1)− α(F, t + 1)− αt+1(H), from Lemma 5.2.3 we have

α(G, t + 1)− α(H, t + 1) =
t∑

i=1
2ni−1 −

t∑
i=1

2mi−1 − αt+1(H).

Without loss of generality, we assume that min{ni|i = 1, 2, · · · , t} = n1. Then
we have

α(G, t + 1)− α(H, t + 1) = 2n1−1

(
t∑

i=1
2ni−n1 −

t∑
i=1

2mi−n1

)
− αt+1(H)

= 2n1−1M − αt+1(H),
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where M =
t∑

i=1
2ni−n1 −

t∑
i=1

2mi−n1 .

We consider the following cases.
Case 1. M < 0.

So, α(G, t+1)−α(H, t+1) < 0, which contradicts α(G, t+1) = α(H, t+1).
Case 2. M > 0.
Subcase 2.1. min{mi|i = 1, 2, · · · , t} ≥ n1.

Then, from the definition of M we see that M ≥ 1. Remembering that
n1 ≥ q(Tn,t)− q(G) + 1 ≥ s + 1 and s ≤ αt+1(H) ≤ 2s − 1, we have

α(G, t + 1)− α(H, t + 1) = 2n1−1M − αt+1(H) ≥ 2s − (2s − 1) ≥ 1,

which also contradicts α(G, t + 1) = α(H, t + 1).
Subcase 2.2. min{mi|i = 1, 2, · · · , t} < n1.

Let θ = n1−min{mi|i = 1, 2, · · · , t}. So, θ = max{n1−mi|i = 1, 2, · · · , t}.
Then, from the definition of M , it is not difficult to see that 2θM ≥ 1. Since

t∑
i=1

mi =
t∑

i=1
ni and min{ni|i = 1, 2, · · · , t} = n1 as well as min{mi|i =

1, 2, · · · , t} < n1, it follows that max{mi|i = 1, 2, · · · , t} ≥ n1 + 1. Hence,
max{mi|i = 1, 2, · · · , t} −min{mi|i = 1, 2, · · · , t} ≥ θ + 1. We have

n1 ≥ q(Tn,t)− q(G) + 1 = (q(Tn,t)− q(F )) + (q(F )− q(G)) + 1.

Since
t∑

i=1
mi = n, from Lemma 5.2.4 we know

q(Tn,t)− q(F ) ≥ max{mi|i = 1, 2, · · · , t} −min{mi|i = 1, 2, · · · , t} − 1 ≥ θ.

Remembering that q(F )−q(G) = s, we have n1 ≥ θ+s+1, i.e., s ≤ n1−θ−1.
Recalling that 2θM ≥ 1, we obtain

α(G, t + 1)− α(H, t + 1) = 2n1−θ−12θM − αt+1(H)
≥ 2n1−θ−1 − (2s − 1)
≥ 2n1−θ−1 − (2n1−θ−1 − 1)
≥ 1,

which again contradicts α(G, t + 1) = α(H, t + 1).
The above contradictions show that we must have M = 0. Then, α(G, t +

1)−α(H, t+1) = −αt+1(H). Recalling that α(G, t+1) = α(H, t+1), we have
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αt+1(H) = 0. Since 0 ≤ s ≤ αt+1(H) = 0, we get s = 0, which implies that
H = K(m1,m2, · · · ,mt). Since H ∼ G, by Theorem 5.5.1 we have H ∼= G. ¤

From Theorem 5.5.2, we can get the following result, which gives an explicit
lower bound for the value min{ni|i = 1, 2, · · · , t}.

Theorem 5.5.3. Let G = K(n1, n2, · · · , nt). If min{ni|i = 1, 2, · · · , t} ≥
∑

1≤i<j≤t

(ni−nj)
2

2t +
√

(t−1)
P

1≤i<j≤t(ni−nj)2

t + 1, then G is χ-unique.

Proof. Let n =
t∑

i=1
ni =

t∑
i=1

xi. Then, we can show that

∑

1≤i<j≤t

xixj ≤ (t− 1)n2

2t
,

where equality holds if and only if t divides n and x1 = x2 = · · · = xt = n
t .

By the definition of Tn,t and the above inequality, we know that

q(Tn,t) ≤ (t− 1)n2

2t
.

Since
q(Tn,t)− q(G) ≤ t−1

2t n2 − q(G)

= t−1
2t (

t∑
i=1

ni)2 −
∑

1≤i<j≤t
ninj

=
(t−1)

Pt
i=1 n2

i−2
P

1≤i<j≤t ninj

2t

=
∑

1≤i<j≤t

(ni−nj)
2

2t ,

from the condition of the theorem, we get

n ≥ tmin{ni|i = 1, 2, · · · , t} ≥ tq(Tn,t)−tq(G)+t+
√

(t− 1)
∑

1≤i<j≤t

(ni − nj)2.

From Theorem 5.5.2, we know that G is χ-unique. ¤

If one wants to have restrictions on the value |ni − nj |, one can get the
following result, which also answers more than Problem 5.1.1 asked for.
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Theorem 5.5.4. If |ni−nj | ≤ k and min{n1, n2, · · · , nt} ≥ tk2

4 +
√

2(t−1)

2 k+1,
then K(n1, n2, · · · , nt) is χ-unique.

Proof. Assume that min{n1, n2, · · · , nt} = n′. Without loss of generality, we
may write

{n1, n2, · · · , nt} = {
t0︷ ︸︸ ︷

n′, · · · , n′,

t1︷ ︸︸ ︷
n′ + 1, · · · , n′ + 1, · · · , · · · ,

tk︷ ︸︸ ︷
n′ + k, · · · , n′ + k}.

So, we have
∑

1≤i<j≤t

(ni − nj)2

2t
=

∑

0≤i<j≤k

titj(i− j)2

2t
.

Since
k∑

i=0
ti = t, we get

∑

0≤i<j≤k

titj(i− j)2

2t
≤ k2

∑

0≤i<j≤k

titj
2t

≤
(

k + 1
2

)
k2t2

2t(k + 1)2
<

tk2

4
,

i.e., ∑

1≤i<j≤t

(ni − nj)2 <
t2k2

2
.

From the condition of the theorem and Theorem 5.5.3, the result holds. ¤

Take G = K(
a︷ ︸︸ ︷

m,m, · · · , m,

b︷ ︸︸ ︷
m + 1,m + 1, · · · , m + 1,

c︷ ︸︸ ︷
m + 2, · · · ,m + 2). Let

n = ma + (m + 1)b + (m + 2)c and t = a + b + c. It is verified directly that

q(Tn,t)− q(G) = min{a, c} ≤ t/2

and
√

(t− 1)
∑

1≤i<j≤t(ni − nj)2

t
=

√
(t− 1)(ab + 4ac + bc)

t
≤ √

t− 1.

Since t/2 ≥ √
t− 1 for t ≥ 2, from Theorem 5.5.2 we have

Theorem 5.5.5. If |ni − nj | = 2 and min{n1, n2, · · · , nt} ≥ t + 1, then
K(n1, n2, · · · , nt) is χ-unique, where t ≥ 2.
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Remarks

In this chapter we focused on the chromaticity of complete multipartite graphs.
By comparing the number of triangles of a complete tripartite graph with that
of its chromatically equivalent graphs, we got a basic theorem, i.e., Theorem
5.3.1. As byproducts of Theorem 5.3.1, we confirmed a conjecture posed in
1990 by Koh and Teo in Graphs and Combinatorics, see Theorem 5.3.2, and
gave a new chromatically unique complete tripartite graph, see Theorem 5.3.3.
In Section 5.4, we obtained three results completely similar to those in Section
5.3. Although Theorem 5.4.1 is similar to Theorem 5.3.1, it is very difficult to
obtain Theorem 5.4.1, by using the same method as used in Theorem 5.3.1.
By using the fact that β(Kn) < β(Kn−1), for n ≥ 2, we proved Theorem 5.4.1.
Then, we obtained Theorems 5.4.2 and 5.4.3, by comparing the numbers of
triangles of complete t-partite graphs K(n− k, n, n, · · · , n) and K(n− k, n−
1, n, · · · , n) with those of their chromatically equivalent graphs. In Section
5.5, again by using the fact that β(Kn) < β(Kn−1), for n ≥ 2, we showed that
if two complete t-partite graphs are chromatically equivalent, then they are
isomorphic, see Theorem 5.5.1. By employing Theorem 5.5.1 and comparing
the number of (t+1)-independent partitions of a complete t-partite graph with
those of its chromatically equivalent graphs, we gave some sufficient conditions
for complete multipartite graphs to be chromatically unique, see Theorems
5.5.2, 5.5.3 and 5.5.4 . We solved a problem proposed in 1990 by Koh and Teo
in Graphs and Combinatorics, see Theorem 5.5.5. The main results in this
chapter are not used in Chapter 6, whereas the basic lemmas in Section 5.2
will play a role in Chapter 6.



Chapter 6

The Chromaticity of

Multipartite Graphs

6.1 Introduction

In the preceding chapter, we investigated the chromaticity of complete multi-
partite graphs and found many new chromatically unique complete multipar-
tite graphs. A natural generalization is to study the chromaticity of general
multipartite graphs. Recently, Dong, Koh, Teo, Little and Hendy studied the
chromaticity of the bipartite graphs and obtained some remarkable results in
[24, 25, 26]. However, there are only few chromatically unique t-partite graphs
for t ≥ 3.

In this chapter, we study the chromaticity of general multipartite graphs.
Two basic lemmas are given in Section 6.2. In Sections 6.3 and 6.4, we in-
vestigate the chromaticity of the tripartite graphs obtained from a complete
bipartite graph by adding some edges between vertices of one of the partition
sets in the complete bipartite graph and of the tripartite graphs obtained from
a complete tripartite graph by deleting some edges. In the last two sections,
we study the chromaticity of 4-partite graphs and of some t-partite graphs,
where t ≥ 5. Many new results are obtained.

Let S be a set of s edges of G. Denote by G − S (simple by G − s) the
graph obtained from G by deleting all edges in S. Let K(n,m) be a com-
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plete bipartite graph with partition sets Ai and Aj such that |Ai| = n and
|Aj | = m. For n ≥ m ≥ s + 1, we denote by K−K1,s(Ai, Aj) the graph ob-
tained by deleting all edges of K1,s from K(n,m) with center in Ai and by
K−sK2(Ai, Aj) the graph obtained by deleting all edges of sK2 from K(n,m).
Let G = K(n1, n2, · · · , nt) be a complete t-partite graph with partition sets
Ai such that |Ai| = ni, where i = 1, 2, · · · , t. We denote by G−s

n1,n2,··· ,nt
the

family {G − S|S ⊂ E(G) and |S| = s}. By K(Ai, Aj) we denote the sub-
graph of G induced by Ai ∪ Aj , where i 6= j and i, j = 1, 2, · · · , t. For
min{n1, n2, · · · , nt} ≥ s+1, we denote by K

−K1,s

i,j (n1, n2, · · · , nt) the graph ob-
tained from K(n1, n2, · · · , nt) by deleting all s edges of K1,s from its subgraph
K(Ai, Aj) with center in Ai and others in Aj and by K−sK2

i,j (n1, n2, · · · , nt)
the graph obtained from K(n1, n2, · · · , nt) by deleting all s edges of sK2

from its subgraph K(Ai, Aj). Note that K−K1,s(Ai, Aj) = K−K1,s(Aj , Ai)
and K

−K1,s

i,j (n1, n2, · · · , nt) = K
−K1,s

j,i (n1, n2, · · · , nt) if |Ai| = |Aj |.

6.2 Some basic results

In this section, we give two important lemmas.

Lemma 6.2.1. ([26]) Let K(n1, n2) be a complete bipartite graph with par-
tition sets Ai such that |Ai| = ni, for i = 1, 2. If min{n1, n2} ≥ s + 2, then
every K−K1,s(Ai, Aj) is χ-unique, where i 6= j and i, j = 1, 2.

Lemma 6.2.2. Let G = K(n1, n2, · · · , nt) with
t∑

i=1
ni = n and n1 ≤ n2 ≤

· · · ≤ nt. Suppose that H is a t-partite graph such that H ∼ G − s, where
S ⊂ E(G) and |S| = s. Then there is a graph F = K(m1,m2, · · · ,mt) with
m1 ≤ m2 · · · ≤ mt, and there is a set S′ of s′ edges in F such that H = F −S′,
s′ = q(F )− q(G) + s ≥ 0 and F and G satisfy the following conditions:

(i)
t∑

i=1
mi =

t∑
i=1

ni = n;

(ii) m1 ≥ n−√(t−1)
P

1≤i<j≤t(ni−nj)2+2t(t−1)s

t ;

(iii) n1 ≥ n−√(t−1)
P

1≤i<j≤t(ni−nj)2+2t(t−1)s

t .
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Proof. Since H is a t-partite graph such that H ∼ G− s, we have α(H, t) ≥
α(G, t) = 1 and α(H, r) = 0, for 0 ≤ r ≤ t − 1. Then V (H) has at
least one t-independent partition, say {A1, A2, · · · , At}, and H is a t-partite
graph. Let |Ai| = mi, i = 1, 2, · · · , t. Then there is a set S′ of s′ edges in
F = K(m1,m2, · · · ,mt) such that H = K(m1,m2, · · · ,mt) − S′ = F − S′.
Remembering that p(H) = p(G − s) and q(H) = q(G − s), it follows that

t∑
i=1

mi =
t∑

i=1
ni = n and s′ = q(F ) − q(G) + s ≥ 0, which implies that (i) is

true.
(ii) Let z denote the minimum value of m1 such that s′ ≥ 0. Then

q(K(z, m2, m3, · · · , mt)) − q(G) + s ≥ 0 for some (m2,m3, · · · ,mt). Denote
by K(z, y2, · · · , yt) the complete t-partite graphs with z ≤ y2 ≤ y3 · · · ≤ yt

and |yi − yj | ≤ 1, for i, j = 2, 3, · · · , t, where
t∑

i=2
yi = n − z. With an ar-

gument similar to that of Lemma 5.2.7, we have that q(K(z, y2, · · · , yt)) ≥
q(K(z, m2, m3, · · · , mt)), for all (m2,m3, · · · ,mt), and that

q(K(z, y2, · · · , yt)) ≤ z(n− z) +
(t− 1)(t− 2)

2

(
n− z

t− 1

)2

.

Since s′ ≥ 0, we have that z satisfies the following inequality

z(n− z) +
(t− 1)(t− 2)

2

(
n− z

t− 1

)2

− q(G) + s ≥ 0.

By solving the above inequality, we have

n−
√

(t− 1)((t− 1)n2 − 2q(G)t + 2st)
t

≤ z

≤ n +
√

(t− 1)((t− 1)n2 − 2q(G)t + 2st)
t

.

Since q(G) =
∑

1≤i<j≤t
ninj and n =

t∑
i=1

ni, we have

(t− 1)n2 − 2q(G)t =
∑

1≤i<j≤t

(ni − nj)2.

So, (ii) holds.
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Taking z = n1, we have

z(n− z) +
(t− 1)(t− 2)

2

(
n− z

t− 1

)2

− q(G) + s ≥ s ≥ 0.

Hence, n1 ≥ n−√(t−1)
P

1≤i<j≤t(ni−nj)2+2t(t−1)s

t , which implies that (iii) holds.
¤

6.3 The chromaticity of tripartite graphs (I)

For n ≥ m ≥ 2, let K(n, m) be a complete bipartite graph with partition sets
A1 and A2 such that |A1| = n and |A2| = m. We denote by K(n, m) + s

the graph obtained by adding s edges between vertices of one of the partition
sets A1 and A2. Denote K(n, n) + s simply by K+s(n, n). In 1990, Teo and
Koh [71] have shown that K(n,m) − 1 is χ-unique. They also proposed the
following problem.

Problem 6.3.1. ([71]) For n ≥ m ≥ 2, study the chromaticity of K(n,m)+1.

We investigate a more general problem.

Problem 6.3.2. For n ≥ m ≥ 2 and s ≥ 1, study the chromaticity of
K(n,m) + s.

In this section, we obtain all chromatically equivalent classes of K+s(n, n),
when n ≥ s + 2. A sufficient and necessary condition for K+s(n, n) to be
χ-unique is obtained, where n ≥ s + 2. Moreover, we give a partial answer to
the above problems.

Theorem 6.3.1. For n ≥ s+2 and s ≥ 1, let S be a set of s edges in Kn and
let < S > be a bipartite graph. Then [K+s(n, n)] = {On + G|G ∈ [Kn − s]}
and K+s(n, n) is χ-unique if and only if Kn − s is χ-unique, where On + G is
the join graph of On and G.

Proof. Let Y = K+s(n, n). By the condition of the theorem, there is a set
S of s edges in Kn such that Y = K(n, n) + s and < S > is a bipartite
graph. Clearly, Y is a tripartite graph. Let Y ′ = Kn − s. Then Y ∼= On + Y ′.
Suppose that H ∼ Y . It suffices to prove that H ∼= On + H ′ and H ′ ∼ Y ′.
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By Lemma 6.2.2, there is a graph F = K(m1,m2,m3) such that H =
F − s′ and s′ = |E(F )| − |E(Y )| = m1m2 + m1m3 + m2m3 − n2 − s, where
m1 + m2 + m3 = 2n. Without loss of generality, let m1 ≤ m2 ≤ m3 and
S′ = {e1, e2, · · · , es′}. We denote by NA(ei) the number of triangles containing
the edge ei in F . Then NA(ei) ≤ m3. So, we have

NA(H) ≥ NA(F )− s′m3 = m1m2m3 − s′m3 (6.1)

and equality holds if and only if NA(ei) = m3 for each ei ∈ S′.
By Lemma 5.2.5, NA(Y ) = NA(H). Since NA(Y ) = ns, by (6.1) the

following inequality must be true.

m1m2m3 − s′m3 ≤ ns. (6.2)

Let f(m3) = m1m2m3 − s′m3 − ns. Recalling that s′ = m1m2 + m1m3 +
m2m3 − n2 − s and m1 + m2 = 2n−m3, we obtain by calculation that

f(m3) = m3(m3 − n)2 + (m3 − n)s. (6.3)

By (6.3), f(m3) > 0 when m3 > n. When m3 ≤ n, we have, from (6.2),
that

f(m3) = (m3 − n)(m2
3 −m3n + s). (6.4)

Since m1 ≤ m2 ≤ m3 and m1+m2+m3 = 2n, we have that m3 ≥ 2n/3 and
2n/3 ≤ m3 ≤ n. It is not difficult to see that m2

3−m3n+s < 0 when n ≥ s+2
and m3 = 2n/3, or m3 = n− 1. Hence, for n ≥ s + 2 and 2n/3 ≤ m3 ≤ n− 1,
we have m2

3 − m3n + s < 0. In fact, when n ≥ s + 2 and 2n/3 ≤ m3 ≤ n,
f(m3) ≥ 0 and the equality holds if and only if m3 = n. So, (6.2) holds if and
only if m3 = n, and m1 ≤ m2 < m3 = n. By (6.1), NA(ei) = n for ei ∈ S′.
Suppose that V (F ) has a unique 3-independent partition {V1, V2, V3} with
|Vi| = mi, i = 1, 2, 3. Then for each edge ei ∈ S′, one edge-vertex of ei belongs
to V1 and another edge-vertex of ei belongs to V2 (otherwise NA(ei) < n).
Therefore H has a component Kn, so, H = On + H ′. By Lemma 5.2.1,

σ(Y ) = σ(On)σ(Y ′), σ(H) = σ(On)σ(H ′).

Since σ(Y ) = σ(H), we have that σ(Y ′) = σ(H ′), i.e., Y ′ ∼ H ′. So,
H ∼= On + H ′ and H ′ ∈ [Kn − s]. Obviously, H ∼= Y if and only if Kn − s is
χ-unique. This completes the proof of the theorem. ¤
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Lemma 6.3.1. ([66, 77]) Let G be a connected graph and H = G ∪ rK1.
If r ≥ 1, then H is χ-unique if and only if G is a χ-unique graph without
cut-vertex.

From Theorem 6.3.1 and Lemma 6.3.1, we have

Theorem 6.3.2. For n ≥ s + 2 and s ≥ 1, let S be a set of s edges in Kn

and let < S > be a bipartite graph. Then K+s(n, n) is χ-unique if and only if
< S > is a χ-unique graph without cut-vertex.

From [43, 71], we can find the following chromatically unique bipartite
graphs:
(i) [43] For n ≥ 4 and n is even, Cn is χ-unique.
(ii) [71] For n ≥ m ≥ 2, K(n,m) is χ-unique.

By K+G(r, r) we denote the graph obtained by adding all edges of G be-
tween vertices of one of the partition sets in K(r, r). From Lemma 6.2.1 and
Theorem 6.3.1, we have

Corollary 6.3.1. Let G ∈ {K(n, m)|n ≥ m ≥ 2}∪{Cn|n ≥ 4 and n is even}.
If r ≥ |E(G)|+ 2, then K+G(r, r) is χ-unique.

Corollary 6.3.2. For n ≥ 3, K(n, n) + 1 is χ-unique.

6.4 The chromaticity of tripartite graphs (II)

In this section we study the chromaticity of tripartite graphs obtained from a
complete tripartite graph by deleting some edges.

Let i, k, m be positive integers and 0 ≤ i ≤ k. Set

f(x) = f(x1, x2, x3) = |2x1 + 2x2 + 2x3 − 2m − 2m+i − 2m+k|, (6.5)

where x1 + x2 + x3 = 3m + i + k and xh is a positive integer for h = 1, 2, 3.

Theorem 6.4.1. Let f(x) be the function defined by (6.5). Then f(x) ≥ 2m

except for the following cases:
(i) f(x) = 0 if x = (m, m + i,m + k);
(ii) f(x) = 2m−1 if x = (m− 1,m + 1,m + k) and i = 0, k ≥ 0.
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Proof. Without loss of generality, let x1 ≤ x2 ≤ x3. We distinguish the
following cases:

Case 1. x3 ≥ m + k + 2. Since 2x3 ≥ 2m+k+2 = 4× 2m+k, by (6.5)

f(x1, x2, x3) > 2m+k ≥ 2m.

Case 2. x3 = m + k + 1. Then x1 + x2 = 2m + i − 1. For 2x3 ≥ 2m+k+1 =
2× 2m+k, by (6.5),

f(x1, x2, x3) = |2x1 + 2x2 + 2m+k − 2m − 2m+i|. (6.6)

Case 2.1. i = k. So, x1 + x2 = 2m + i− 1. By (6.6),

f(x1, x2, x3) = |2x1 + 2x2 − 2m|. (6.7)

For i ≥ 0, we have that x2 ≥ m + 1, or x1 = x2 = m, or x1 = m − 1
and x2 = m. So, if x2 ≥ m + 1, or x1 = x2 = m, by (6.7), f(x1, x2, x3) =
|2x1 + 2x2 − 2m| ≥ 2m. If x1 = m − 1 and x2 = m, from (6.7) we have
f(x1, x2, x3) = 2m−1 and i = k = 0, which is a special case of (ii).

Case 2.2. i ≤ k − 1. From 2m+k ≥ 2 × 2m+i and x1 + x2 = 2m + i − 1, we
have x2 ≥ m. By (6.6), f(x1, x2, x3) ≥ 2m.

Case 3. x3 = m + k. Then x1 + x2 = 2m + i. By (6.5),

f(x1, x2, x3) = |2x1 + 2x2 − 2m − 2m+i|. (6.8)

Case 3.1. x2 ≥ m + i + 2. So, 2x2 = 4× 2m+i. By (6.8), f(x1, x2, x3) > 2m.

Case 3.2. x2 = m + i + 1. Then x1 = m− 1. By (6.8),

f(x1, x2, x3) = |2m−1 + 2m+i − 2m|.

For i ≥ 1, f(x1, x2, x3) = |2m−1+2m+i−2m| ≥ 2m; for i = 0, f(x1, x2, x3) =
|2m−1 + 2m+i − 2m| = 2m−1, that is, x1 = m− 1, x2 = m + 1 and x3 = m + k,
which is (ii).

Case 3.3. x2 = m + i. Then x1 = m. So, f(x1, x2, x3) = 0.

Case 3.4. x2 = m+ i− 1. Clearly x1 = m+1. Since x1 ≤ x2, we have i ≥ 2.
By (6.8),

f(x1, x2, x3) = |2m+1 + 2m+i−1 − 2m − 2m+i| = |2m − 2m+i−1| ≥ 2m.
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Case 3.5. x2 ≤ m + i− 2. By x1 ≤ x2 and (6.8),

f(x1, x2, x3) = |2x1 + 2x2 − 2m − 4× 2m+i−2| > 2m.

Case 4. x3 = m + k − 1. So, x1 + x2 = 2m + i + 1. By (6.5),

f(x1, x2, x3) = |2x1 + 2x2 − 2m − 2m+i − 2m+k−1|. (6.9)

Case 4.1. x2 = x3 = m + k − 1. So, x1 = m + i + 2− k. By (6.9),

f(x1, x2, x3) = |2m+i+2−k − 2m − 2m+i|.

For k ≥ 2, f(x1, x2, x3) ≥ 2m; For k = 1 and i = 1, f(x1, x2, x3) ≥ 2m; For
k = 1 and i = 0, or k = i = 0, x1 > x2, which contradicts x1 ≤ x2.

Case 4.2. x2 ≤ x3 − 1.
Clearly, 2m+k−1 = 2x3 ≥ 2× 2x2 . By (6.9), f(x1, x2, x3) ≥ 2m.

Case 5. x3 ≤ m + k − 2. As 2m+k+2 = 4× 2x3 , we have f(x1, x2, x3) > 2m.

This completes the proof of the theorem. ¤

The proofs of the following three theorems are typical for the proofs of
further theorems on χ-uniqueness in coming sections. For that reason, the
proofs are given in a more elaborate way.

Theorem 6.4.2. Let n1 ≤ n2 ≤ n3 with n = n1 + n2 + n3 and s ≥ 1. If
n > 1

2

∑
1≤i<j≤3

(ni − nj)2 +
√

2
∑

1≤i<j≤3
(ni − nj)2 + 12s + 3s + 3, then G−s

n1,n2,n3

is χ-closed.

Proof. Suppose that Y ∈ G−s
n1,n2,n3

and Y = G− s, where G = K(n1, n2, n3).
Let H be a graph with H ∼ Y . It suffices to prove that H ∈ G−s

n1,n2,n3
.

Note that Y is a tripartite graph. By Lemma 6.2.2, there is a graph
F = K(m1,m2,m3) such that H = F − s′ and s′ = q(F ) − q(G) + s, where
m1 ≤ m2 ≤ m3. Set

f(x1, x2, x3) = |2x1 + 2x2 + 2x3 − 2n1 − 2n2 − 2n3 |.

Note that

α(G− s, 4) =
3∑

i=1

2ni−1 − 3 + α4(G− s)
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and

α(F − s′, 4) =
3∑

i=1

2mi−1 − 3 + α4(F − s′).

By Lemma 5.2.5, α(H, 4) = α(G− s, 4) = α(F − s′, 4). So,

α(F − s′, 4)− α(G− s, 4) =
3∑

i=1

2mi−1 −
3∑

i=1

2ni−1 + α4(F − s′)− α4(G− s)

=

{
1
2f(m1,m2, m3) + α4(F − s′)− α4(G− s), if α(F, 4) ≥ α(G, 4),
−1

2f(m1,m2,m3) + α4(F − s′)− α4(G− s), if α(F, 4) < α(G, 4).

By Theorem 6.4.1,

f(m1, m2,m3)





= 0, if (m1, m2,m3) = (n1, n2, n3),
= 2n1−1, if (m1, m2,m3) = (n1 − 1, n1 + 1, n3) and n1 = n2,
≥ 2n1 , otherwise.

Since 1
6

∑
1≤i<j≤3

(ni−nj)2 ≥ q(Tn,3)− q(G), by the condition it follows that

n−
√

2
∑

1≤i<j≤t
(ni − nj)2 + 12s

3
> q(Tn,3)− q(G) + s + 1.

From Lemmas 5.2.4 and 6.2.2, m1 > q(Tn,3) − q(G) + s + 1 ≥ s′ + 2 and
n1 > q(Tn,3)− q(G) + s + 1 ≥ s + 2. Thus, by Lemma 5.2.7, we have

0 ≤ s′ ≤ α4(F − s′) ≤ 2s′ − 1

and

0 ≤ s ≤ α4(G− s) ≤ 2s − 1.

As in Theorem 6.4.1, we prove that H ∈ G−s
n1,n2,n3

by distinguishing the
following cases:

Case 1. (m1, m2,m3) = (n1 − 1, n2 + 1, n3) and n1 = n2.
Obviously, α(F, 4)− α(H, 4) = 2n1−2. So, we have

α(F − s′, 4)− α(G− s, 4) = 2n1−2 + α4(F − s′)− α4(G− s).
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Since n1 ≥ s+2, 0 ≤ s′ ≤ α4(F −s′) ≤ 2s′−1 and 0 ≤ s ≤ α4(G−s) ≤ 2s−1,
we have

α(F − s′, 4)− α(G− s, 4) ≥ 2n1−2 + α4(F − s′)− 2n1−2 + 1 ≥ 1,

which contradicts α(F − s′, 4) = α(G− s, 4).

Case 2. (m1,m2,m3) 6= (n1 − 1, n1 + 1, n3) and n1 = n2, or (m1, m2,m3) 6=
(n1, n2, n3).

Note that n1 ≥ q(Tn,3)−q(G)+s+2 ≥ [(Tn,3)−q(F )]+[q(F )−q(G)+s]+2 ≥
s′ + 2. Since n1 ≥ s + 2, from Theorem 6.4.1 we have

α(F − s′, 4)− α(G− s, 4) ≥ 2n1−1 + α4(F − s′)− α4(G− s)
> 2s + α4(F − s′)− 2s + 1 ≥ 1,

or

α(F − s′, 4)− α(G− s, 4) ≤ −2n1−1 + α4(F − s′)− α4(G− s)
< −2s′ + 2s′ − 1− α4(G− s) ≤ −1.

This contradicts α(F − s′, 4) = α(G− s, 4).
From Cases 1 and 2, (m1,m2,m3) = (n1, n2, n3). Furthermore, F = G and

s = s′. So, H ∈ G−s
n1,n2,n3

. ¤

Corollary 6.4.1. If j ≤ k and m > k2

3 + 2
3

√
k2 + 3s + s + 1, then G−s

m,m+j,n+k

is χ-closed, where s ≥ 1.

Proof. Let n1 = m,n2 = m + j and n3 = m + k. For
∑

1≤i<j≤3
(ni − nj)2 =

j2 + k2 + (k − j)2 ≤ 2k2, we have that n ≥ 3m > k2 + 2
√

k2 + 3s + 3s + 3 >
1
2

∑
1≤i<j≤3

(ni− nj)2 +
√

2
∑

1≤i<j≤t
(ni − nj)2 + 12s + 3s + 3. By Theorem 6.4.2,

the result follows. ¤

Theorem 6.4.2 and Corollary 6.4.1 gave some sufficient conditions for a
family G−s

n1,n2,n3
to be χ-closed. Let min{n1, n2, n3} ≥ s+1 and H ∈ G−s

n1,n2,n3
.

We consider the number of 4-independent partitions of H. Note that α(H, 4) =
α(G, 4)+α4(H), where α(G, 4) = 2n1−1 +2n2−1 +2n3−1− 3 and s ≤ α4(H) ≤
2s − 1. By Lemma 5.2.7, one sees that
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(i) α4(H) = 2s − 1 if and only if all s edges in S share a common end-vertex
and the other end-vertices belong to the same Ai for some i, i.e., H is one of
the following graphs:

K
−K1,s

i,j (n1, n2, n3), for i 6= j, i, j = 1, 2, 3.

(ii) α4(H) = s if and only if the subgraph induced by any r (r ≥ 2) edges in
S is not a complete multipartite graph. There are many graphs H such that
α4(H) = s.

We investigate the chromatic uniqueness of all graphs H with α4(H) =
2s − 1 and of one of the graphs H with α4(H) = s in the following theorems.

Theorem 6.4.3. Let n1 +n2 +n3 = n and s ≥ 1. If n > 1
2

∑
1≤i<j≤3

(ni−nj)2 +
√

2
∑

1≤i<j≤3
(ni − nj)2 + 12s+3s+3, then K

−K1,s

i,j (n1, n2, n3) is χ-unique, where

i 6= j and i, j = 1, 2, 3.

Proof. Let G = K(n1, n2, n3). Suppose that F ∈ {K−K1,s

i,j (n1, n2, n3)|i 6= j

and i, j = 1, 2, 3} and H ∼ F . Now we prove that H = F .
By the condition of the theorem and Theorem 6.4.2,

H ∈ G−s
n1,n2,n3

.

Note that α(H, 4) = α(G, 4)+α4(H), where α(G, 4) = 2n1−1+2n2−1+2n3−1−3.
Since α4(H) = α4(F ) = 2s − 1, it follows, from Lemma 5.2.7, that

H ∈ {K−K1,s

i,j (n1, n2, n3)|i 6= j, i, j = 1, 2, 3}.

By Lemma 5.2.5, NA(H) = NA(F ). Therefore we consider the numbers of
triangles of H and F . According to the numbers of triangle of F , we partition
K
−K1,s

i,j (n1, n2, n3) into three classes:

Type 1: F ∈ G1 = {K−K1,s

2,3 (n1, n2, n3),K
−K1,s

3,2 (n1, n2, n3}, NA(F ) =
n1n2n3 − sn1;

Type 2: F ∈ G2 = {K−K1,s

1,3 (n1, n2, n3),K
−K1,s

3,1 (n1, n2, n3)}, NA(F ) =
n1n2n3 − sn2;

Type 3: F ∈ G3 = {K−K1,s

1,2 (n1, n2, n3),K
−K1,s

2,1 (n1, n2, n3)}, NA(F ) =
n1n2n3 − sn3.
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It is not hard to see that F, H ∈ G1 ∪ G2 ∪ G3. If F ∈ Ga, H ∈ Gb and
a 6= b, by NA(H) = NA(F ), we have na = nb. Note that if ni = nj , then, for
any l 6= i, j, we have

K
−K1,s

i,l (n1, n2, n3) = K
−K1,s

j,l (n1, n2, n3),

and
K
−K1,s

l,i (n1, n2, n3) = K
−K1,s

l,j (n1, n2, n3).

Hence na = nb implies that Ga = Gb and F and H belong to the same set Gi,
where i = 1, 2, 3.

Without loss of generality, let F ∈ G1 and H ∈ G1. For n2 = n3,
K
−K1,s

2,3 (n1, n2, n3) = K
−K1,s

3,2 (n1, n2, n3), we need only prove that if n2 6= n3,
then

P (K−K1,s

2,3 (n1, n2, n3), λ) 6= P (K−K1,s

3,2 (n1, n2, n3), λ).

Since P (H1, λ) = P (H2, λ) if and only if σ(H1, x) = σ(H2, x), for two graphs
H1 and H2, we consider the σ-polynomials of F and H. By Lemma 5.2.1,

σ(K−K1,s

2,3 (n1, n2, n3), x) = σ(K−K1,s(A2, A3), x)σ(Kn1 , x),

σ(K−K1,s

3,2 (n1, n2, n3), x) = σ(K−K1,s(A3, A2), x)σ(Kn1 , x).

By the proof of Theorem 6.4.2, one sees that min{n1, n2, n3} ≥ s + 2. By
Lemma 6.2.1, if n2 6= n3, we have

σ(K−K1,s(A2, A3), x) 6= σ(K−K1,s(A3, A2), x).

So,
σ(K−K1,s

2,3 (n1, n2, n3), x) 6= σ(K−K1,s

3,2 (n1, n2, n3), x),

i.e.,
P (K−K1,s

2,3 (n1, n2, n3), λ) 6= P (K−K1,s

3,2 (n1, n2, n3), λ).

Hence F = H and both K
−K1,s

2,3 (n1, n2, n3) and K
−K1,s

3,2 (n1, n2, n3) are χ-
unique.

Similarly, one can prove cases in which F ∈ Gi and H ∈ Gi, i = 2, 3. ¤

Similar to the derivation of Corollary 6.4.1, by Theorem 6.4.3, we have
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Corollary 6.4.2. If n1 ≤ n2 ≤ n3, n3 − n1 = k and n1 > k2

3 + 2
3

√
k2 + 3s +

s + 1, then K
−K1,s

i,j (n1, n2, n3) is χ-unique, where s ≥ 1, i 6= j, i, j = 1, 2, 3.

Let G = K(n1, n2, n3) with n1 ≤ n2 ≤ n3 and let A1, A2 and A3 be three
partition sets with |Ai| = ni, where i = 1, 2, 3. We denote by H−sK2

n1,n2,n3
the

graph obtained by deleting all edges of sK2 from K(A1, A2) in G.

Theorem 6.4.4. Suppose n1 + n2 + n3 = n and s ≥ 1. If n1 ≤ n2 < n3 and
n > 1

2

∑
1≤i<j≤3

(ni − nj)2 +
√

2
∑

1≤i<j≤3
(ni − nj)2 + 12s + 3s + 3, then H−sK2

n1,n2,n3

is χ-unique.

Proof. Suppose F ∼ H−sK2
n1,n2,n3

. It is sufficient to prove that F = H−sK2
n1,n2,n3

.
By Theorem 6.4.2, F ∈ G−s

n1,n2,n3
. Let S = {e1, e2, e3, · · · , es} and let

NA(ei) denote the number of triangles containing ei in K(n1, n2, n3). Then
NA(ei) ≤ n3. By n1 ≤ n2 < n3, NA(ei) = n3 if and only if ei is an edge of
subgraph K(A1, A2). So,

NA(F ) ≥ n1n2n3 −
s∑

i=1

NA(ei) ≥ n1n2n3 − sn3

and equality holds if and only if all edges of S are edges of subgraph K(A1, A2).
Note that NA(F ) = n1n2n3 − sn3 and α4(F ) = α4(H−sK2

n1,n2,n3
) = s. From

Lemma 5.2.7, we have F = H−sK2
n1,n2,n3

. ¤

By Theorem 6.4.4, the following is obtained easily.

Corollary 6.4.3. If n1 ≤ n2 < n3, n3 − n1 = k and n1 > k2

3 + 2
3

√
k2 + 3s +

s + 1, then H−sK2
n1,n2,n3

is χ-unique, where s ≥ 1.

6.5 The chromaticity of 4-partite graphs

With the same method as used in the preceding section, in this section we
investigate the chromaticity of 4-partite graphs obtained from a complete 4-
partite graph by deleting some edges. First we give the lower bounds for the
function g(x), which is defined by
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g(x) = |2x1 + 2x2 + 2x3 + 2x4 − 2m − 2m+i − 2m+j − 2m+k|, (6.10)

where x = (x1, x2, x3, x4), xh is a positive integer for h = 1, 2, 3, 4 and x1 +
x2 + x3 + x4 = 4m + i + j + k.

Theorem 6.5.1. Let g(x) be the function defined by (6.10). Then g(x) ≥ 2m

except for the following cases:
(i) g(x) = 0 if x = (m, m + i,m + j, m + k);
(ii) g(x) = 2m−k+1 if x = (m− k + 1,m + 2, m + k− 1,m + k− 1) and i = 0,

j = 1 and k ≥ 3;
(iii) g(x) = 2m−1 if x = (m− 1,m + 1,m + j,m + k) and i = 0, or

x = (m− 1,m + k− 1,m + k− 1,m + k− 1) and i = j = k− 2 and k ≥ 2;
(iv) 2m−1 < g(x) < 2m if x = (m− b,m+ i+1,m+ b+ i,m+ b+ i), and i = j

and k = b + i + 1, where b is a positive integer and b ≥ 2.

Proof. Without loss of generality, assume that x1 ≤ x2 ≤ x3 ≤ x4. We
distinguish the following cases.

Case 1. x4 ≥ m + k + 3. Since 2x4 ≥ 2m+k+3 = 8 × 2m+k, it is clear from
(6.10) that g(x) ≥ 2m+k > 2m.

Case 2. x4 = m + k + 2. So, x1 + x2 + x3 = 3m + i + j − 2.
As x1+x2+x3 = 3m+i+j−2, x3 ≥ m. Clearly, 2x4 +2x3 ≥ 4×2m+k+2m.

Hence, by (6.10), we have g(x) ≥ 2m+k > 2m.

Case 3. x4 = m + k + 1. Then, x1 + x2 + x3 = 3m + i + j − 1.

Subcase 3.1. j = k. From (6.10), it follows that

g(x) = |2x1 + 2x2 + 2x3 − 2m − 2m+i|. (6.11)

Suppose that x3 ≥ m + i + 2. From (6.11), it is clear that g(x) ≥ 2m.

Suppose that x3 = m + i + 1. Then x1 + x2 = 2m + j − 2, and so x2 ≥ m

or x1 = x2 = m− 1. By (6.11), we have g(x) ≥ 2m.

Suppose that x3 = m+ i. Clearly, x1 +x2 = 2m+ j− 1. This implies that
x2 ≥ m + 1 or x1 = m− 1, x2 = m and i = j = k = 0. Thus, from (6.11), we
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have g(x) = |2x1 + 2x2 − 2m| ≥ 2m, or g(x) = |2x1 + 2x2 − 2m| = 2m−1 and
x1 = m− 1, x2 = m, x3 = m and x4 = m + 1, which is a special case of (iii).

Suppose that x3 = m+ i−1. Note that x1 ≤ x2 ≤ x3 = m+ i−1. Clearly,
x1 + x2 = 2m + j. By (6.11), it follows immediately that

g(x) = |2x1 + 2x2 − 2m − 2m+i−1|. (6.12)

In (6.12), if x2 = m + i − 1, then x1 = m + j − i + 1 ≥ m + 1. Thus
g(x) = |2x1 − 2m| ≥ 2m; if x2 ≤ m + i− 2, then, as x1 ≤ x2 and by (6.12) we
have g(x) ≥ 2m.

Suppose that x3 ≤ m+ i−2. Note that x1 ≤ x2 ≤ x3 = m+ i−2. Clearly,
2m+i ≥ 4× 2x3 . According to (6.11), it follows immediately that g(x) ≥ 2m.

Subcase 3.2. j ≤ k − 1. Since x4 = m + k + 1, by (6.10), we have

g(x) = |2x1 + 2x2 + 2x3 + 2× 2m+k−1 − 2m − 2m+i − 2m+j |. (6.13)

Recalling that x1 + x2 + x3 = 3m + i + j − 1, we see that x3 ≥ m + 1 or
x3 = x2 = m. Hence, it is easy to see from (6.13) that g(x) ≥ 2m.

Case 4. x4 = m + k. Then x1 + x2 + x3 = 3m + i + j and

g(x) = |2x1 + 2x2 + 2x3 − 2m − 2m+i − 2m+j |. (6.14)

By Theorem 6.4.1 and (6.14), we get (i) and part one of (iii) of the theorem.

Case 5. x4 = m + k − 1. Then x1 + x2 + x3 = 3m + i + j + 1.

Subcase 5.1. x3 = x4 = m+ k− 1. Then x1 +x2 = 2m+ i+ j +2− k. From
(6.10), we have

g(x) = |2x1 + 2x2 − 2m − 2m+i − 2m+j |. (6.15)

We consider (6.15) by distinguishing the following subcases.

Subcase 5.1.1. x2 ≥ m + j + 2. It is clear that g(x) ≥ 2m.

Subcase 5.1.2. x2 = m + j + 1. Then x1 = m + i + 1 − k. By (6.15), it
follows that

g(x) = |2x1 + 2m+j − 2m − 2m+i|. (6.16)
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Subcase 5.1.2.1. Suppose that i = j. From (6.16), we have

g(x) = |2x1 − 2m|. (6.17)

In (6.17), if x1 ≥ m + 1, then g(x) ≥ 2m; if x1 = m, then i = k − 1 and
x2 = m + j + 1 = m + i + 1 = m + k > x4, which contradicts the assumption
x2 ≤ x4; if x1 = m−1, then i = j = k−2, and thus x2 = x3 = x4 = m+k−1
and g(x) = 2m−1, which is part two of (iii); if x1 ≤ m− 2, we see that 2m−1 <

g(x) < 2m. Assume that x1 = m−b. Then x2 = m+i+1, x3 = x4 = m+b+i,
k = b + i + 1 and i = j, where b is a positive integer and b ≥ 2, which implies
(iv).

Subcase 5.1.2.2. Suppose that i = j − 1. Clearly, j = i + 1 ≥ 1 and
x1 = m + i + 1− k. From (6.16), it is not difficult to see that

g(x) = |2x1 + 2m+j−1 − 2m|. (6.18)

In (6.18), if i ≥ 1, then j ≥ 2, and it follows immediately that g(x) = 2m; if
i = 0, then j = 1 and x2 = m + j + 1 ≤ x3 = m + k − 1, thus k ≥ 3. So,
if i = 0, from (6.18) we have j = 1, k ≥ 3 and 0 < g(x) = 2m−k+1 ≤ 2m−2,

which is (ii).

Subcase 5.1.2.3. Suppose that i ≤ j−2. Since 2m+j = 4×2m+j−2 ≥ 4×2m+i,
it follows from (6.16) that g(x) > 2m.

Subcase 5.1.3. x2 = m + j. So, x1 = m + i + 2− k. From (6.15), it is clear
that

g(x) = |2x1 − 2m − 2m+i|. (6.19)

In (6.19), if k ≥ 2, then x1 ≤ m + i, and so g(x) ≥ 2m; if k ≤ 1, then
x1 ≥ m + i + 1 > x4 = m + k − 1, which contradicts our assumption x1 ≤ x4.

Subcase 5.1.4. x2 ≤ m + j − 1. As x1 ≤ x2, from (6.15), it is clear that
g(x) > 2m.

Subcase 5.2. x4 = m + k − 1 and x3 = m + k − 2. From (6.10), we have

g(x) = |2x1 + 2x2 − 2m − 2m+i − 2m+j − 2m+k−2|. (6.20)
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Subcase 5.2.1. Suppose that x2 = x3 = m+k−2. So, x1 = m+i+j−2k+5 =
m + j − (k − i)− (k − 5). From (6.20), it follows that

g(x) = |2x1 − 2m − 2m+i − 2m+j |. (6.21)

In (6.21), if k ≥ 5, then m + j ≥ x1, and thus g(x) > 2m; if k ≤ 4, then
x1 ≤ x2 ≤ m + 2. So, when x1 ≤ m +1, from (6.21) we have g(x) ≥ 2m; when
x1 = m + 2, we must have that k = 4 and i + j = 5 ( otherwise if k ≤ 3,
then x1 ≤ x2 = m + 1), which implies that j ≥ 3. From (6.21), it is clear that
g(x) > 2m.

Subcase 5.2.2. Suppose that x2 ≤ x3 − 1 = m + k − 3. As x1 ≤ x2, from
(6.20) we have

g(x) = |2x1 + 2x2 − 2m − 2m+i − 2m+j − 2× 2m+k−3| > 2m.

Subcase 5.3. x4 = m + k− 1 and x3 ≤ m + k− 3. By (6.10), we know that

g(x) = |2x1 + 2x2 + 2x3 − 2m − 2m+i − 2m+j − 4× 2m+k−3| > 2m.

Case 6. x4 ≤ m + k − 2. From (6.10), it is not difficult to deduce that

g(x) = |2x1 + 2x2 + 2x3 + 2x4 − 2m − 2m+i − 2m+j − 4× 2m+k−2| > 2m.

This completes the proof of the theorem. ¤

Theorem 6.5.2. Let G = K(n1, n2, n3, n4) and S ⊂ E(G) such that n =
n1 + n2 + n3 + n4 and |S| = s ≥ 1. If n >

√
3

∑
1≤i<j≤4(ni − nj)2 + 24s +

4q(Tn,4)− 4q(G) + 4s + 4, then G−s
n1,n2,n3,n4

is χ-closed.

Proof. Let G = K(n1, n2, n3, n4) and H ∈ G−s
n1,n2,n3,n4

. Then there exists a
subset S of E(G) such that H = G− S. Let Y be a graph such that Y ∼ H.
We prove that Y ∈ G−s

n1,n2,n3,n4
.

By Lemma 6.2.2, there exists a graph F = K(m1,m2,m3, m4) and S′ ⊆
E(F ) such that Y = F −S′, |S′| = s′, s′ = q(F )−q(G)+s and

4∑
i=1

ni =
4∑

i=1
mi.

Without loss of generality, assume that n1 ≤ n2 ≤ n3 ≤ n4 and m1 ≤ m2 ≤
m3 ≤ m4. From the condition of the theorem, we have

n−
√

3
∑

1≤i<j≤t(ni − nj)2 + 24s

4
> q(Tn,4)− q(G) + s + 1.



142 Chapter 6

By Lemmas 5.2.4 and 6.2.2, we have that n1 > q(Tn,4)− q(G) + s + 1 ≥ s + 2
and m1 > q(Tn,4) − q(G) + s + 1 ≥ s′ + 2. So, from Lemma 5.2.7, it follows
that

α(H, 5) = α(G, 5) + α5(H), s ≤ α5(H) ≤ 2s − 1

and
α(Y, 5) = α(F, 5) + α5(Y ), s′ ≤ α5(Y ) ≤ 2s′ − 1.

Suppose that n4 − n1 = θ and

g(x) = |2x1 + 2x2 + 2x3 + 2x4 − 2n1 − 2n2 − 2n3 − 2n4 |.

By Lemma 5.2.5, α(H, 5) = α(Y, 5). So, by Lemma 5.2.3, we have

α(Y, 5)− α(H, 5) =
4∑

i=1
2mi−1 −

4∑
i=1

2ni−1 + α5(Y )− α5(H)

=

{
1
2g(m1,m2,m3, m4) + α5(Y )− α5(H), if α(F, 5) ≥ α(G, 5),
−1

2g(m1,m2,m3,m4) + α5(Y )− α5(H), if α(F, 5) < α(G, 5).
(6.22)

By Theorem 6.5.1, we need only consider the following cases.

Case 1. (m1,m2,m3,m4) = (n1, n2, n3, n4). Then F = G and s = s′; i.e.
Y ∈ G−s

n1,n2,n3,n4
.

Case 2. (m1,m2,m3,m4) = (n1 − θ + 1, n1 + 2, n1 + θ − 1, n1 + θ − 1) and
θ ≥ 3.

From Theorem 6.5.1(ii), we have n1 = n2, n3 = n1 + 1, n4 = n1 + θ and
θ ≥ 3. It is not difficult to verify that α(F, 5) > α(G, 5). Thus, by (6.22) and
Theorem 6.5.1(ii), we have

α(Y, 5)− α(H, 5) = 2n1−θ + α5(Y )− α5(H). (6.23)

By Lemma 5.2.4, n1 > q(Tn,4)− q(G) + s + 1 ≥ θ + s; i.e., s < n1 − θ. Since
s ≤ α5(H) ≤ 2s − 1 and 0 ≤ s′ ≤ α5(Y ) ≤ 2s′ − 1, by (6.23) we have

α(Y, 5)− α(H, 5) > 2s + α5(Y )− 2s + 1 ≥ 1.

This contradicts α(Y, 5) = α(H, 5).

Case 3. (m1,m2,m3,m4) = (n1 − 1, n1 + 1, n3, n4).
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From part one of Theorem 6.5.1 (iii), it is clear that n1 = n2, α(F, 5) ≥
α(G, 5) and g(m1,m2, m3,m4) = 2n1−1. Hence, from (6.22), it follows that

α(Y, 5)− α(H, 5) = 2n1−2 + α5(Y )− α5(H). (6.24)

Recalling that n1 ≥ s+2, s ≤ α5(H) ≤ 2s−1 and 0 ≤ s′ ≤ α5(Y ) ≤ 2s′−1,
we obtain, from (6.24), that

α(Y, 5)− α(H, 5) ≥ 2s + α5(Y )− 2s + 1 ≥ 1,

which again contradicts α(Y, 5) = α(H, 5).

Case 4. (m1, m2,m3,m4) = (n1 − 1, n1 + θ − 1, n1 + θ − 1, n1 + θ − 1).
By part two of Theorem 6.5.1 (iii), n2 = n3 = n4−2 and θ ≥ 2. In this case,

it is not hard to deduce that α(F, 5) < α(G, 5) and g(m1,m2,m3, m4) = 2n1−1.
Hence, from (6.22), it follows that

α(Y, 5)− α(H, 5) = −2n1−2 + α5(Y )− α5(H). (6.25)

Recalling that q(F )−q(G)+s = s′ and q(Tn,4)−q(F ) ≥ θ−1, by Lemma 5.2.4,
we have n1 > q(Tn,4)− q(G) + s + 1 = q(Tn,4)− q(F ) + q(F )− q(G) + s + 1 ≥
s′+θ ≥ s′+2. Note that 0 ≤ s ≤ α5(H) ≤ 2s−1 and 0 ≤ s′ ≤ α5(Y ) ≤ 2s′−1.
It thus follows, from (6.25), that

α(Y, 5)− α(H, 5) ≤ −2s′ + 2s′ − 1− α5(H) ≤ −1,

which again contradicts the fact that α(Y, 5) = α(H, 5).

Case 5. (m1, m2,m3,m4) = (n1 − b, n1 + i + 1, n1 + i + b, n1 + i + b).
By Theorem 6.5.1 (iv), n2 = n3 = n1 + i, n4 = n1 + b + i + 1 and b ≥ 2.

So, we deduce that α(F, 5) < α(G, 5) and g(m1,m2,m3,m4) > 2n1−1. Hence,
from (6.22), it follows that

α(Y, 5)− α(H, 5) ≤ −2n1−2 + α5(Y )− α5(H). (6.26)

By Lemma 5.2.4, q(Tn,4) − q(F ) ≥ 2b + i − 1 ≥ 3. As q(F ) − q(G) + s = s′,
n1 > q(Tn,4)−q(F )+q(F )−q(G)+s+1 ≥ s′+2. Note that 0 ≤ s ≤ α5(H) ≤
2s − 1 and 0 ≤ s′ ≤ α5(Y ) ≤ 2s′ − 1. It thus follows, from (6.26), that

α(Y, 5)− α(H, 5) < −2s′ + 2s′ − 1− α5(H) ≤ −1,
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which again contradicts the fact that α(Y, 5) = α(H, 5).

Case 6. (m1,m2,m3,m4) does not take the values from Case 1 to Case 5.
By Theorem 6.5.1, g(m1,m2,m3,m4) ≥ 2n1 . From (6.22), it follows that

α(Y, 5)− α(H, 5) ≥ 2n1−1 + α5(Y )− α5(H) (6.27)

or

α(Y, 5)− α(H, 5) ≤ −2n1−1 + α5(Y )− α5(H) (6.28)

As s ≤ n1 − 2 and s′ ≤ n1 − 2, by (6.27) and (6.28) we have

α(Y, 5)− α(H, 5) ≥ 2n1−1 + α5(Y )− α5(H) > 2s + α5(Y )− 2s + 1 ≥ 1

or

α(Y, 5)− α(H, 5) ≤ −2n1−1 + α5(Y )− α5(H) < −2s′ + 2s′ − 1− α5(H) ≤ −1.

This contradicts the fact that α(F, 5) = α(H, 5).
We thus conclude from the above arguments that (m1,m2,m3,m4) =

(n1, n2, n3, n4). Clearly, F = G and |S| = |S′|. Hence Y ∈ G−s
n1,n2,n3,n4

, as
required. ¤

The following lemma follows from the proof of Theorem 5.5.4.

Lemma 6.5.1. Let G = K(n1, n2, n3, n4) with n vertices. Then

q(Tn,4)− q(G) ≤
∑

1≤i<j≤4

(ni − nj)2

8
.

From Lemma 6.5.1 and Theorem 6.5.2, the following corollary follows im-
mediately.

Corollary 6.5.1. Let G = K(n1, n2, n3, n4) and s ≥ 1.

(i) If min{n1, n2, n3, n4} >
∑

1≤i<j≤4

(nj−ni)
2

8 +
√

3
P

1≤i<j≤4(ni−nj)2+24s

4 + s + 1,

then G−s
n1,n2,n3,n4

is χ-closed, where i, j = 1, 2, 3, 4.
(ii) If m > k2/2 +

√
3k2 + 6s/2 + s + 1, then G−s

m,m+i,m+j,m+k is χ-closed.
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Theorem 6.5.3. Let G = K(n1, n2, n3, n4) and n = n1+n2+n3+n4. Suppose
that n1 ≤ n2 ≤ n3 ≤ n4, s ≥ 1 and n >

√
3

∑
1≤i<j≤4(ni − nj)2 + 24s +

4q(Tn,4)− 4q(G) + 4s + 4. Then
(i) every K

−K1,s

i,j (n1, n2, n3, n4) is χ-unique, for any (i, j) if n2 +n3 6= n1 +n4,
where i 6= j and i, j = 1, 2, 3, 4;

(ii) every K
−K1,s

i,j (n1, n2, n3, n4) is χ-unique, for any (i, j) if n1 = n2 and
n3 = n4, where i 6= j and i, j = 1, 2, 3, 4;

(iii) every K
−K1,s

i,j (n1, n2, n3, n4) is χ-unique, for (i, j) ∈ {(1, 2), (2, 1), (1, 3),
(3, 1), (2, 4), (4, 2), (3, 4), (4, 3)}.

Proof. Denote by X the family {K−K1,s

i,j (n1, n2, n3, n4)|i 6= j and i, j =
1, 2, 3, 4}. Assume that F ∈ X. Let H be a graph such that H ∼ F . It
suffices to prove that H = F .

By Theorem 6.5.2, H ∈ G−s
n1,n2,n3,n4

. Since α5(H) = α(F ) = 2s − 1, by
Lemma 5.2.7 we have H ∈ X. In the following, we consider the numbers of
triangles of H and F . Let M be the number of triangles of K(n1, n2, n3, n4)
and NA(i, j) the number of triangles in the graph K

−K1,s

i,j (n1, n2, n3, n4). Then
the following results can be obtained easily.

NA(1, 2) = NA(2, 1) = M − s(n3 + n4),
NA(1, 3) = NA(3, 1) = M − s(n2 + n4),
NA(1, 4) = NA(4, 1) = M − s(n2 + n3),
NA(2, 3) = NA(3, 2) = M − s(n1 + n4),
NA(2, 4) = NA(4, 2) = M − s(n1 + n3),
NA(3, 4) = NA(4, 3) = M − s(n1 + n2).

(6.29)

Since n1 ≤ n2 ≤ n3 ≤ n4, it is not difficult to see that

n1 + n2 ≤ n1 + n3 ≤ n1 + n4 = n2 + n3 ≤ n2 + n4 ≤ n3 + n4 (6.30)

or

n1 + n2 ≤ n1 + n3 ≤ n1 + n4 < n2 + n3 ≤ n2 + n4 ≤ n3 + n4 (6.31)

or

n1 + n2 ≤ n1 + n3 ≤ n2 + n3 < n1 + n4 ≤ n2 + n4 ≤ n3 + n4. (6.32)
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We partition the family X into the following classes:
G1 = {K−K1,s

1,2 (n1, n2, n3, n4),K
−K1,s

2,1 (n1, n2, n3, n4)},
G2 = {K−K1,s

1,3 (n1, n2, n3, n4),K
−K1,s

3,1 (n1, n2, n3, n4)},
G3 = {K−K1,s

1,4 (n1, n2, n3, n4),K
−K1,s

4,1 (n1, n2, n3, n4)},
G4 = {K−K1,s

2,3 (n1, n2, n3, n4),K
−K1,s

3,2 (n1, n2, n3, n4)},
G5 = {K−K1,s

2,4 (n1, n2, n3, n4),K
−K1,s

4,2 (n1, n2, n3, n4)},
G6 = {K−K1,s

3,4 (n1, n2, n3, n4),K
−K1,s

4,3 (n1, n2, n3, n4)}.
Obviously, X = ∪6

i=1Gi. Note that if ni = nj , then, for any l 6= i, j, we
have

K
−K1,s

i,l (n1, n2, n3, n4) = K
−K1,s

j,l (n1, n2, n3, n4),

and
K
−K1,s

l,i (n1, n2, n3, n4) = K
−K1,s

l,j (n1, n2, n3, n4).

Since H ∼ F , NA(H) = NA(F ). Hence, if there exist two distinct positive
integers a and b such that F ∈ Ga and H ∈ Gb, then by NA(H) = NA(F ) and
(6.29)-(6.32), the following results can be shown:

(i) if n1 + n4 6= n2 + n3, then Ga = Gb;
(ii) if n1 + n4 = n2 + n3 and n1 = n2, then Ga = Gb;
(iii) if n1 + n4 = n2 + n3 and n1 6= n2, then Ga = Gb if and only if a 6= 3, 4

or b 6= 3, 4.
So, by the conditions of (i), (ii) and (iii) of the theorem, it suffices to prove

that F = H if F and H belong to the same set Ga. Without loss of generality,
assume that F ∈ G1 and H ∈ G1. Take F = K

−K1,s

1,2 (n1, n2, n3, n4). Clearly,
H = K

−K1,s

1,2 (n1, n2, n3, n4) or H = K
−K1,s

2,1 (n1, n2, n3, n4). So, we need only
prove that if K

−K1,s

1,2 (n1, n2, n3, n4) 6= K
−K1,s

2,1 (n1, n2, n3, n4), then

P (K−K1,s

1,2 (n1, n2, n3, n4), λ) 6= P (K−K1,s

2,1 (n1, n2, n3, n4), λ).

Note that K
−K1,s

1,2 (n1, n2, n3, n4) = K
−K1,s

2,1 (n1, n2, n3, n4) for n1 = n2. By
Lemma 5.2.1, for n1 6= n2, we have

σ(K−K1,s

1,2 (n1, n2, n3, n4), x) = σ(K−K1,s(A1, A2), x)σ(Kn3 , x)σ(Kn4 , x)

and

σ(K−K1,s

2,1 (n1, n2, n3, n4), x) = σ(K−K1,s(A2, A1), x)σ(Kn3 , x)σ(Kn4 , x).
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From the proof of Theorem 6.5.2, we have min{n1, n2, n3, n4} ≥ s + 2. By
Lemma 6.2.1 we know that if n1 6= n2, then

σ(K−K1,s(A1, A2), x) 6= σ(K−K1,s(A2, A1), x).

So,
σ(K−K1,s

1,2 (n1, n2, n3, n4), x) 6= σ(K−K1,s

2,1 (n1, n2, n3, n4), x),

which implies that

P (K−K1,s

1,2 (n1, n2, n3, n4), λ) 6= P (K−K1,s

2,1 (n1, n2, n3, n4), λ).

Hence H = F and both K
−K1,s

1,2 (n1, n2, n3, n4) and K
−K1,s

2,1 (n1, n2, n3, n4) are
χ-unique.

Similarly, we can show that K
−K1,s

i,j (n1, n2, n3, n4) is χ-unique for other
pairs (i, j) satisfying one of the conditions (i), (ii) and (iii) of the theorem. ¤

From Lemma 6.5.1 and Theorem 6.5.3, we have

Corollary 6.5.2. Let n1 ≤ n2 ≤ n3 ≤ n4 and s ≥ 1.

(i) Assume that n1 >
∑

1≤i<j≤4

(nj−ni)
2

8 +
√

3
P

1≤i<j≤4(ni−nj)2+24s

4 + s + 1. If

n1+n4 6= n2+n3, or n1 = n2 and n3 = n4, then every K
−K1,s

i,j (n1, n2, n3, n4),
for i 6= j and i, j = 1, 2, 3, 4, is χ-unique.

(ii) Assume that n1 > k2/2+
√

3k2 + 6s/2+s+1 and n4−n1 = k. If n1+n4 6=
n2 + n3, or n1 = n2 and n3 = n4, then K

−K1,s

i,j (n1, n2, n3, n4), for i 6= j

and i, j = 1, 2, 3, 4, is χ-unique.

Theorem 6.5.4. Let G = K(n1, n2, n3, n4) with n1 ≤ n2 < n3 ≤ n4 and let
s ≥ 1. If n >

√
3

∑
1≤i<j≤4(ni − nj)2 + 24s + 4q(Tn,4)− 4q(G) + 4s + 4, then

K−sK2
1,2 (n1, n2, n3, n4) is χ-unique, where n = n1 + n2 + n3 + n4.

Proof. Suppose that H ∼ K−sK2
1,2 (n1, n2, n3, n4). By Theorem 6.5.2 and

Lemma 5.2.7, H ∈ G−s
n1,n2,n3,n4

and α5(H) = s. Next we consider the number
of triangles of H. Without loss of generality, assume that S ⊂ E(G) and
H = G − S. Let e ∈ S. Denote by NA(e) the number of triangles in G con-
taining the edge e. Then NA(e) ≤ n3 + n4. As n1 ≤ n2 < n3 ≤ n4, we know
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that NA(e) = n3 + n4 if and only if e is an edge of the subgraph K(A1, A2).
So,

NA(H) ≥ NA(G)− s(n3 + n4),

where equality holds if and only if e is an edge of the subgraph K(A1, A2) in
G. Recalling α5(H) = s, by Lemma 5.2.7 we have H = K−sK2

1,2 (n1, n2, n3, n4).
¤

Similarly, from Lemma 6.5.1 and Theorem 6.5.4, we have

Corollary 6.5.3. Suppose that n1 ≤ n2 < n3 ≤ n4 and s ≥ 1.

(i) If min{n1, n2, n3, n4} >
∑

1≤i<j≤4

(nj−ni)
2

8 +
√

3
P

1≤i<j≤4(ni−nj)2+24s

4 + s + 1,

then K−sK2
1,2 (n1, n2, n3, n4) is χ-unique.

(ii) If n1 > k2/2+
√

3k2 + 6s/2+s+1 and n4−n1 = k, then K−sK2
1,2 (n1, n2, n3, n4)

is χ-unique.

6.6 The chromaticity of t-partite graphs

For t ≥ 5, it is very difficult to study the chromaticity of t-partite graphs
by using the same procedure as in the former sections. So, in this section,
we investigate the chromaticity of t-partite graphs obtained by deleting some
edges from a complete t-partite graph K(n, n, · · · , n, n + 1, n + 1, · · · , n + 1),
where t ≥ 5.

Let xi be positive integers, for all i = 1, 2, · · · , t. First, we give the lower
bounds the function defined as

ϕ(x) =
t∑

i=1

2xi , (6.33)

where
t∑

i=1
xi = t1n + t2(n + 1), t1 ≥ 1 and t1 + t2 = t, x = (x1, x2, · · · , xt).

Lemma 6.6.1. Let x1 = (x1, x2, · · · , xi, · · · , xj , · · · , xt) and x2 = (x1, x2, · · · ,
xi + 1, · · · , xj − 1, · · · , xt). If xj ≥ xi + 2, then

ϕ(x1)− ϕ(x2) ≥ 2xj−2.
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Proof. By (6.33) and xj ≥ xi + 2, we can check this directly. ¤

Let x′ = (x1, x2, · · · , xi, · · · , xj , · · · , xt) and x′′ = (x1, x2, · · · , xi + 1, · · · ,
xj − 1, · · · , xt). If i < j and xi +2 ≤ xj , then x′′ is said to be an improvement
of x′. By Lemma 6.6.1, one sees that ϕ(x′) > ϕ(x′′) if x′′ is an improvement
of x′. Let Π = t12n + t22n+1, where t1 ≥ 1 and t1 + t2 = t. For convenience,

we replace
a︷ ︸︸ ︷

n, n, · · · , n by a× n. For example, K(t1 × n, t2 × (n + 1)) denotes

the graph K(
t1︷ ︸︸ ︷

n, n, · · · , n,

t2︷ ︸︸ ︷
n + 1, n + 1, · · · , n + 1) and G−s(t1 × n, t2 × (n + 1))

denotes the family {K(
t1︷ ︸︸ ︷

n, n, · · · , n,

t2︷ ︸︸ ︷
n + 1, n + 1, · · · , n + 1)− s|s ≥ 1}.

Theorem 6.6.1. Let ϕ(x) be the function defined by (6.33). Then ϕ(x) ≥
Π + 2n−1 except for ϕ(x) = Π if x = (t1 × n, t2 × n + 1).

Proof. Suppose that x = (x1, x2, · · · , xt) such that
t∑

i=1
xi = t1n + t2(n + 1)

and t1 + t2 = t. Let x1 = x. We construct a sequence x1,x2,x3, · · · ,xm

from x1 such that |xm
i − xm

j | ≤ 1 for any two elements xm
i and xm

j in xm and
xk+1 is an improvement of xk, where xk = (xk

1, x
k
2, · · · , xk

i , · · · , xk
j , · · · , xk

t )
and k = 1, 2, · · · ,m− 1.

From Lemma 6.6.1, we have that

ϕ(xk)− ϕ(xk+1) ≥ 2xk
j−2, (6.34)

for some j.
So, from (6.34), we have that ϕ(x) ≥ Π and the equality holds if and

only if x = xm = (n, n, · · · , n, n + 1, n + 1, · · · , n + 1). Note that xm =
(t1 × n, t2 × (n + 1)) and xm is an improvement of xm−1. So, xm−1 must be
one of the following cases.

Case 1. xm−1 = (n− 1, (t1 − 2)× n, (t2 + 1)× (n + 1)). So,

ϕ(xm−1) = 2n−1 + (t1 − 2)2n + (t2 + 1)2n+1 = Π + 2n−1.

Case 2. xm−1 = ((t1 + 1)× n, (t2 − 2)× (n + 1)). Then

ϕ(xm−1) = (t1 + 1)2n + (t2 − 2)2n+1 + 2n+2 = Π + 2n.
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Case 3. xm−1 = (n− 1, (t1 − 1)× n, (t2 − 1)× (n + 1), n + 2). We have

ϕ(xm−1) = 2n−1 + (t1 − 1)2n + (t2 − 1)2n+1 + 2n+2 = Π + 2n + 2n−1.

Let Xk = {xk|xk+1 is an improvement of xk}, where k = 1, 2, · · · ,m − 1
and Xm = {(t1 × n, t2 × (n + 1))}. From (6.34), we have

min{ϕ(xk)|xk ∈ Xk} > min{ϕ(xk+1)|xk+1 ∈ Xk+1}.

From the above arguments we have that the theorem holds. ¤

Theorem 6.6.2. Let s ≥ 1, n ≥ 2 and t1 ≥ 1. If n ≥ s + 2, then G−s(t1 ×
n, t2 × (n + 1)) is χ-closed.

Proof. Let H ∈ G−s(t1 × n, t2 × (n + 1)). Then there exists a subset S of
E(K(t1 × n, t2 × (n + 1))) such that H = K(t1 × n, t2 × (n + 1)) − S. Let
Y be a graph such that Y ∼ H. The definition of χ-closed implies that it is
sufficient to prove that Y ∈ G−s(t1 × n, t2 × (n + 1)).

By Lemma 6.2.2, we know that there exists a graph F = K(m1,m2, · · · ,mt)
and S′ ⊂ E(F ) such that Y = F − S′ and |S′| = s′, s′ = q(F )− q(G) + s and

t∑
i=1

ni =
t∑

i=1
mi. Note that

α(H, t + 1) = 2−1Π− t + αt+1(H)

and

α(Y, t + 1) = 2−1
t∑

i=1

2mi − t + αt+1(Y ).

Without loss of generality, assume that m1 ≤ m2 ≤ · · · ≤ mt and

ψ(x) =
t∑

i=1

2mi −Π.

By Lemma 5.2.5, we have that α(H, t + 1) = α(Y, t + 1). So,

α(Y, t + 1)− α(H, t + 1) = 2−1ψ(x) + αt+1(Y )− αt+1(H). (6.35)

From Theorem 6.6.1, it suffices to consider the following cases.
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Case 1. (m1,m2, · · · ,mt) = (t1 × n, t2 × (n + 1)). Then F = K(t1 × n, t2 ×
(n + 1)) and s = s′, i.e., Y ∈ G−s(t1 × n, t2 × (n + 1)).

Case 2. (m1, m2, · · · , mt) does not take the values of Case 1.

By Theorem 6.6.1, it is clear that ψ(x) ≥ 2n−1. From (6.35), it follows
that

α(Y, t + 1)− α(H, t + 1) ≥ 2n−2 + αt+1(Y )− αt+1(H). (6.36)

Since n ≥ s + 2, by Lemma 5.2.7, we have that s ≤ αt+1(H) ≤ 2s − 1 and
s′ ≤ αt+1(Y ). Thus, by (6.36) we have that

α(Y, t + 1)− α(H, t + 1) ≥ 2n−2 + αt+1(Y )− αt+1(H)
≥ 2s + αt+1(Y )− 2s + 1 ≥ 1,

This contradicts α(F, t + 1) = α(H, t + 1).

From the above arguments, we have that Y ∈ G−s(t1×n, t2× (n+1))). ¤

Suppose that K(t1 × n, t2 × (n + 1)) has t partition sets Ai such that
|Ai| = n, for 1 ≤ i ≤ t1, and |Ai| = n + 1, for t1 + 1 ≤ i ≤ t. Note that if
ni = nj , then, for any l 6= i, j, we can see that

K
−K1,s

i,l (t1 × n, t2 × (n + 1)) = K
−K1,s

j,l (t1 × n, t2 × (n + 1)),

and

K
−K1,s

l,i (t1 × n, t2 × (n + 1)) = K
−K1,s

l,j (t1 × n, t2 × (n + 1)).

So, K
−K1,s

i,j (t1 × n, t2 × (n + 1)), for i 6= j and i, j = 1, 2, · · · , t, include the

following different graphs: K
−K1,s

i,j (t1 × n, t2 × (n + 1)), for |Ai| = |Aj | = n,

denoted by H−K1,s(n, n), K
−K1,s

i,j (t1× n, t2× (n + 1)), for |Ai| = |Aj | = n + 1,

denoted by H−K1,s(n + 1, n + 1), K
−K1,s

i,j (t1 × n, t2 × (n + 1)), for |Ai| = n

and |Aj | = n + 1, denoted by H−K1,s(n, n + 1), K
−K1,s

i,j (t1 × n, t2 × (n + 1)),
for |Ai| = n + 1 and |Aj | = n, denoted by H−K1,s(n + 1, n). Let H−K1,s =
{H−K1,s(n, n), H−K1,s(n + 1, n + 1),H−K1,s(n, n + 1),H−K1,s(n + 1, n)}.

Theorem 6.6.3. Let G ∈ H−K1,s. If s ≥ 1 and n ≥ s+2, then G is χ-unique.
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Proof. Suppose that F ∈ H−K1,s and H ∼ F . From Theorem 6.6.2,

H ∈ G−s(t1 × n, t2 × (n + 1)).

Note that αt+1(H) = αt+1(F ) = 2s − 1. By Lemma 5.2.7, we know that

H ∈ H−K1,s .

So, we now prove that P (G1, λ) 6= P (G2, λ) for G1 and G2 in H−K1,s .
From Lemma 5.2.5, it is obvious that the number of triangles of H is equal

to that of F . Let M be the number of triangles of K(t1 × n, t2 × (n + 1)) and
NA(i, j) the number of triangles in H−K1,s(i, j), where i, j = n, n + 1. Then
the following results can be obtained easily.

NA(n, n) = M − s((t1 − 2)n + t2(n + 1)),
NA(n + 1, n + 1) = M − s(t1n + (t2 − 2)(n + 1)),
NA(n, n + 1) = NA(n + 1, n) = M − s((t1 − 1)n + (t2 − 1)(n + 1)).

(6.37)

By (6.37), we see that NA(H) = NA(F ) if and only if H, F ∈ {H−K1,s(n, n+
1), H−K1,s(n + 1, n)}. Noticing that

H−K1,s(n, n + 1) = K−K1,s(n, n + 1) + K((t1 − 1)× n, (t2 − 1)× (n + 1))

and

H−K1,s(n + 1, n) = K−K1,s(n + 1, n) + K((t1 − 1)× n, (t2 − 1)× (n + 1)),

by Lemma 5.2.1 we have that

σ(H−K1,s(n, n + 1), x) = σ(K−K1,s(n, n + 1), x)Q(x)

and

σ(H−K1,s(n + 1, n), x) = σ(K−K1,s(n + 1, n), x)Q(x),

where Q(x) = σ(K((t1 − 1)× n, (t2 − 1)× (n + 1)), x).
Since n ≥ s + 2, it follows, from Lemma 6.2.1, that

σ(K−K1,s(n, n + 1), x) 6= σ(K−K1,s(n + 1, n), x),
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which implies that

P (H−K1,s(n, n + 1), λ) 6= P (H−K1,s(n + 1, n), λ).

Hence P (G1, λ) 6= P (G2, λ) for G1 and G2 in H−K1,s . ¤

Let K(n, n, (t−2)×(n+1)) has t partition sets Ai such that |A1| = |A2| = n

and |Ai| = n + 1 for 3 ≤ i ≤ t.

Theorem 6.6.4. Let G = K(n, n, (t− 2)× (n + 1)). If s ≥ 1 and n ≥ s + 2,
then K−sK2

1,2 (n, n, (t− 2)× (n + 1)) is χ-unique.

Proof. Suppose that H ∼ K−sK2
1,2 (n, n, (t − 2) × (n + 1)). From Theorem

6.6.2 and Lemma 5.2.7, we have that H ∈ G−s(n, n, (t − 2) × (n + 1)) and
αt+1(H) = s. Next we consider the number of triangles of H. Without loss of
generality, assume that S ⊂ E(G) and H = G − S. Let e ∈ S and let NA(e)
be the number of triangles in G containing the edge e. Then one can see that
NA(e) ≤ (t− 2)(n + 1) and that equality holds if and only if each e ∈ S is an
edge of the subgraph K(A1, A2) of G. So,

NA(H) ≥ NA(G)− s(t− 2)(n + 1),

where equality holds if and only if each e ∈ S is an edge of the subgraph
K(A1, A2) of G.

Note that NA(H) = NA(G)−s(t−2)(n+1) and αt+1(H) = s. By Lemma
5.2.7, we know that H = K−sK2

1,2 (n, n, (t− 2)× (n + 1)). ¤

Remarks

In this chapter we investigated the chromaticity of general multipartite graphs.
In Section 6.3, we study the chromaticity of the tripartite graphs obtained
from a complete bipartite graph by adding some edges between vertices of
one of the partition sets in the complete bipartite graph. We found all chro-
matic equivalence classes of graphs K+s(n, n) and a necessary and sufficient
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condition for K+s(n, n) to be chromatically unique, see Theorems 6.3.1 and
6.3.2, where n ≥ s + 2 and the subgraphs induced by the s edges are bipartite
graphs. In Sections 6.4, 6.5 and 6.6, by employing the same method, we in-
vestigated the chromaticity of the tripartite graphs obtained from a complete
tripartite graph by deleting some edges, the 4-partite graphs obtained from a
complete 4-partite graph by deleting some edges and the t-partite graphs ob-
tained from the complete t-partite graph K(n, n, · · · , n, n+1, n+1, · · · , n+1)
by deleting some edges, respectively. Some parallel results were obtained.
First, we gave some lower bounds of three similar functions, see Theorems
6.4.1, 6.5.1 and 6.6.1. Then, by using these theorems and comparing the num-
bers of (t + 1)-independent partitions of t-partite graph with those of their
corresponding chromatically equivalent graphs, we obtained some sufficient
condition for three classes to be χ-closed, see Theorems 6.4.2, 6.5.2 and 6.6.2.
Finally, we studied the chromatic uniqueness of graphs with the maximum
number of (t + 1)-independent partitions or with the minimum number of
(t+1)-independent partitions in these three classes and found some chromati-
cally unique graphs, see Theorems 6.4.3, 6.4.4, 6.5.3, 6.5.4, 6.6.3 and 6.6.4, by
considering the number of triangles of a graph and those of its chromatically
equivalent graphs. However, it is difficult to get new results on chromaticity
of multipartite graphs, by applying the above method.
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[41] R.E. Giudici and M.A. López, Chromatic uniqueness of sKn, Report
No. 85-03, Dpto. de Mat. y Ciencia de la Comp. Univ. Simón Bolivar,
1985.

[42] R.E. Giudici, M.A. L’opez and P.M. Salzberg, Chromatic uniqueness
for some bipartite graphs Km,n(Spanish), Acta Cient. Venezolana 37
(1986), 484-494.

[43] K.M. Koh and K.L. Teo, The search for chromatically unique graphs,
Graphs Combin. 6 (1990), 259-285.

[44] K.M. Koh and K.L. Teo, The search for chromatically unique graphs II,
Discrete Math. 172(1997), 59-78.

[45] R. Korfhage, σ−polynomials and graph coloring, J. Combin. Theory
Ser. B 24 (1978), 137–153.



Bibliography 159

[46] N.Z. Li, The list of chromatically unique graphs of order seven and eight,
Discrete Math. 172 (1997), 193-221.

[47] N.Z. Li, X.W. Bao and R.Y. Liu, Chromatic uniqueness of the comple-
ments of certain forests, Discrete Math. 172 (1997), 79-84.

[48] N.Z. Li and R.Y. Liu, The chromaticity of the complete t-partite graph
K(1, p2, · · · , pt), J. Xinjiang Univ. Natur. Sci. 7 (1990), No.3, 95-96.

[49] N.Z. Li, E.G. Whitehead Jr. and S.J. Xu, Classification of chromati-
cally unique graphs having quadratic σ-polynomials, J. Graph Theory
11 (1987), 169-176.

[50] R.Y. Liu, A new method to find the chromatic polynomial of a graph
and its applications, Kexue Tongbao 32 (1987), 1508-1509.

[51] R.Y. Liu, Adjoint polynomials of graphs (Chinese), J. Qinghai Normal
Univ.(Natur. Sci.) (1990), No. 1, 1-9.

[52] R.Y. Liu, Chromatic uniqueness of Kn−E(kPs∪rPt) (Chinese), J. Sys.
Sci. Math. Sci. 12 (1992), 207-214.

[53] R.Y. Liu, Several results on adjoint polynomials of graphs (Chinese), J.
Qinghai Normal Univ.(Natur. Sci.) (1992), No. 1, 1-6.

[54] R.Y. Liu, Chromatic uniqueness of the complements of the graphs Pq−1

(Chinese) J. Math. Res. Exposition 14 (1994), 469-472.

[55] R.Y. Liu, Chromatic uniqueness of complements of unions of irreducible
cycles (Chinese), Math. Appl. 7 (1994), 200-205.

[56] R.Y. Liu, Chromatic uniqueness of a class of complementary graphs of
trees (Chinese), Math. Appl. (suppl.) 9 (1996), 170-173.

[57] R.Y. Liu, Two new classes of chromatically unique graphs (Chinese),
Acta Sci. Natur. Univ. Neimonggol 27 (1996), 11-17.

[58] R.Y. Liu, Adjoint polynomials and chromatically unique graphs, Dis-
crete Math. 172 (1997), 85-92.



160 Bibliography

[59] R.Y. Liu and X.W. Bao, Chromatic uniqueness of the complements of
2-regular graphs (Chinese), Pure and Applied Math. (suppl.) 9 (1993),
69-71.

[60] R.Y. Liu and N.Z. Li, Chromatic uniqueness of a kind of graph of the
Kn −E(G) type (Chinese), Acta Math. Sci. 14 (1994), 316-320.

[61] R.Y. Liu and J.F. Wang, On chromatic uniqueness of complement of
union of cycles and paths (Chinese), Theor. Comput. Sci. 1 (1992), 112-
126.

[62] R.Y. Liu and L.C. Zhao, A new method for proving chromatic uniqueness
of graphs, Discrete Math. 171 (1997), 169-177.

[63] H.C. Ma, The roots of the adjoint polynomials of a class of graphs (Chi-
nese), J.Math. Res. Exposition 21 (2001), 252-256.

[64] Y.H. Peng, On the chromatic uniqueness of certain bipartite graphs,
Discrete Math. 94 (1991), 129-140.

[65] R.C. Read, An introduction to chromatic polynomials, J. Combin. The-
ory 4 (1968), 52-71.

[66] R.C. Read, Connectivity and chromatic uniqueness, Ars Combin. 23
(1987), 209-218.

[67] R.C. Read, Recent advances in chromatic polynomial theory. In: Proc.
Fifth Caribbean Conf. on Combin. and Comput. Barbados., 1988.

[68] R.C. Read and W.T. Tutte, Chromatic polynomials. In: Selected Topics
in Graph Theory III, Academic Press, 1988.
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Notation

V (G): vertex set of G

E(G): edge set of G

p(G): the number of vertices of G

q(G): the number of edges of G

G: complement of G

NG(v): the set of vertices of G adjacent to v

dG(v) or d(v): the degree of vertex v

NG(e): NG(v1) ∪NG(v2)− {v1, v2}, where e = v1v2

dG(e): |NG(e)|
NA(G): the number of triangles of G

η(G): the edge density of G

P (G,λ): chromatic polynomial of G

σ(G, x) or σ(G): σ-polynomial of G

h(G, x) or h(G): adjoint polynomial of G

t(G): the lowest term of h(G, x)
`(G): the degree of t(G)
h1(G, x) or h1(G) : polynomial with a nonzero constant term such that

h(G, x) = x`(G)h1(G, x)
f(G, x): characteristic polynomial of G

ρ(G): the maximum roots of f(G, x)
β(G): the minimum real roots of h(G, x)
α(G, k): the number of k-independent partitions of G
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164 Notation

Pn: path with n vertices, P = {Pn|n ≥ 2}
Cn: cycle with n vertices, C = {Cn|n ≥ 3}
K1,n−1: star with n vertices
Kn: complete graph with n vertices
On: Kn

K(n1, n2, · · · , nt): complete t-partite graph
G− S: the graph obtained by deleting all edges in S from G

G + S: the graph obtained by adding all edges in S to G

that are not already present
αr(G− S): α(G− S, r)− α(G, r)

For two graphs G and H,
G ∼= H: G is isomorphic to H

G = H: G ∼= H

G ∼ H: P (G,λ) = P (H, λ)
G ∼h H: h(G, x) = h(H, x)
[G]: {H|H ∼ G}
[G]h: {H|H ∼h G}
G ∪H: the disjoint union of G and H

G + H: the join graph of G and H

For two polynomials f(x) and g(x) in x,
(f(x), g(x)): the greatest common factor of f(x) and g(x)
g(x)|f(x): g(x) divides f(x)
g(x) 6 |f(x): g(x) does not divide f(x)
∂f(x): the degree of f(x).

For a real number a,
bac: the largest integer smaller than or equal to a

dae: the smallest integer larger than or equal to a

For two sets A and B,

A\B: the set obtained from A by deleting the elements in B.



Index

< S >, 22
An, 6
Bn, 6
C3(a, b, c), 10
Ca(Pb), 51
Ca(Pb, Pc), 51
Cn(a, b, c), 56
Dn, 6
E(G), 2
Fn, 6
G ∗ e, 6, 30
G + H, 23, 107
G + S′, 22
G− S, 22, 106, 125
G− s, 106
G ∪H, 2
G ∼ H, 5
G ∼h H, 5
Ge(Pm), 7, 31
Gw(Pm), 31
K(Ai, Aj), 22
K(n1, n2, · · · , nt), 19
K+s(n, n), 128
K−K1,s(Ai, Aj), 126
K−sK2(Ai, Aj), 126
Kn, 2
Kn − E(G), 2

K+
n , 114

K
−K1,s

i,j (n1, n2, · · · , nt), 22, 126
K−sK2

i,j (n1, n2, · · · , nt), 22, 126
NA(G), 2
P (G,λ), 3
Pn(a, b), 56
Qa,b,c, 10
T -shaped trees, 85
Ta,b,c, 8
Tn,t, 107
Un, 6
V (G), 2
Vn, 45
W (a, b, c), 56
Zn, 45
[G], 79
[G]h, 79
αt(G− S), 107
β(G), 9, 41
χ-closed, 5
χ-equivalent, 5
χ-unique, 5
`(G), 13
η(G), 60
G, 2
ρ(G), 42
σ-polynomial, 3
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σ-real, 11
σ-unreal, 11, 60
τ -polynomial, 3
d(v), 2
dG(e), 2
f(G, x), 42
h-real, 60
h-unreal, 60
h(G), 30
h(G, x), 29
h1(G), 30
p(G), 2
q(G), 2
C, 2
G−s

n1,n2,··· ,nt
, 22

P, 2
T1, 9
U , 9

adjacent, 37
adjoint closure, 15, 79
adjoint polynomial, 4, 29
adjointly closed, 5, 80
adjointly equivalent, 5, 79
adjointly equivalent transform, 80
adjointly unique, 5

character, 16, 66
chromatic number, 3
chromatic polynomial, 3
chromatically equivalent, 5
chromatically normal, 119
chromatically unique, 5
chromaticity, 1

comparability graph, 9
complement, 2
complete t-partite graph, 107
complete graph, 2
cycle, 2

edge set, 2
edge-density, 11, 60

ideal subgraph, 4, 29
independent partitions, 3
internal path, 43
invariant, 90
invariant R1(G), 16, 66
invariant R2(G), 90
invariant R3(G), 18, 99
irreducible graph, 13

minimum edge-density, 11
minimum real root, 41

P-real, 11
P-unreal, 11
path, 2
path tree, 44

splitting vertex, 37
star, 2
Stirling number, 107

uniquely χ(G)–colorable graph, 8
uniquely colorable graph, 37
unreal root, 41

vertex coloring, 3
vertex set, 2
vertex splitting graph, 37



Summary

In this thesis, our main aim is to study the algebraic properties of adjoint
polynomials and the chromaticity of some classes of graphs. In the first part,
Chapters 2 and 3, we concentrate on algebraic properties and roots of adjoint
polynomials. In the second part, Chapters 4, 5 and 6, by applying the results
of the first part we investigate the chromaticity of some classes of graphs,
including dense graphs, complete multipartite graphs and general multipartite
graphs.

In Chapter 1 we introduce some basic definitions and terminology and give
an overview of our main results, together with some connections with older
results.

In Chapter 2 we investigate the recursive relations and divisibility of ad-
joint polynomials of some families of graphs. As an application of the recursive
relations of adjoint polynomials, some new uniquely colorable graphs are ob-
tained.

By using the results of Chapter 2, in Chapter 3 we study the minimum real
roots of adjoint polynomials and determine some classes of graph with complex
roots. We first give some basic equalities and inequalities on the minimum real
roots of adjoint polynomials of some graphs. Then all connected graphs such
that the minimum real roots of their adjoint polynomial belong to the interval
[−4, 0] and to the interval [−(2+

√
5),−4) are determined. In the last section of

this chapter, we give a way to construct graphs such that their σ-polynomials
have at least one complex root. Moreover we solve a problem posed in 1994
by Brenti, Royle and Wagner in Canadian Journal of Mathematics.

Our main goal in Chapter 4 is to study the chromaticity of some dense
graphs, by using results in the Chapters 2 and 3. We establish a necessary
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168 Summary

and sufficient condition of chromatic uniqueness of a dense graph such that its
minimum degree is greater than or equal to the number of vertices minus 3. A
necessary and sufficient condition for two graphs H and G with the minimum
real roots greater than or equal to −4 to be adjointly equivalent is obtained,
too. Two conjectures proposed in 2002 by Dong, Teo, Little and Hendy in
Discrete Mathematics are solved. In the last three sections of this chapter, we
obtain new results on the adjointly uniqueness of graphs.

In Chapter 5 we turn our attention to the chromaticity of complete mul-
tipartite graphs. First, by using some results of the minimum real roots
of adjoint polynomials we show that the complete t-partite graph K(n −
k, n, n, · · · , n) is χ-unique, for all k ≥ 2, n ≥ k + 2 and t ≥ 3. Then we
give some sufficient conditions for complete multipartite graphs to be chro-
matically unique. Furthermore we solve a conjecture and a problem proposed
in 1990 by Koh and Teo in Graphs and Combinatorics.

As a natural generalization of Chapter 5, in the last chapter we study the
chromaticity of general multipartite graphs. We investigate the chromaticity of
the tripartite graphs obtained from a complete bipartite graph by adding some
edges between vertices of one of the partition sets in the complete bipartite
graph and of the tripartite graphs obtained from a complete tripartite graph
by deleting some edges. In the last two sections, we study the chromaticity of
4-partite graphs and of some t-partite graphs, where t ≥ 5, and obtain some
new results.
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